Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1135:464efeeb988e
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Jan 2023 08:00:28 +0900 |
parents | 4c85ce2794e9 |
children | 181ffd308ab5 |
files | src/filter.agda |
diffstat | 1 files changed, 15 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Fri Jan 13 07:37:27 2023 +0900 +++ b/src/filter.agda Fri Jan 13 08:00:28 2023 +0900 @@ -169,13 +169,14 @@ genf : Filter {L} {P} LP generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) -record MaximumFilter {L P : HOD} (LP : L ⊆ Power P) : Set (suc n) where +record MaximumFilter {L P : HOD} (LP : L ⊆ Power P) (F : Filter {L} {P} LP) : Set (suc n) where field mf : Filter {L} {P} LP + F⊆mf : filter F ⊂ filter mf proper : ¬ (filter mf ∋ od∅) is-maximum : ( f : Filter {L} {P} LP ) → ¬ (filter f ∋ od∅) → ¬ ( filter mf ⊂ filter f ) -record Fp {L P : HOD} (LP : L ⊆ Power P) (mx : MaximumFilter {L} {P} LP ) (p x : Ordinal ) : Set n where +record Fp {L P : HOD} (LP : L ⊆ Power P) (F : Filter {L} {P} LP) (mx : MaximumFilter {L} {P} LP F ) (p x : Ordinal ) : Set n where field y : Ordinal mfy : odef (filter (MaximumFilter.mf mx)) y @@ -183,15 +184,16 @@ max→ultra : {L P : HOD} (LP : L ⊆ Power P) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (mx : MaximumFilter {L} {P} LP ) → {y : Ordinal } → odef (filter (MaximumFilter.mf mx)) y → ultra-filter ( MaximumFilter.mf mx ) -max→ultra {L} {P} LP CAP mx {y} mxy = record { proper = MaximumFilter.proper mx ; ultra = ultra } where + → (F0 : Filter {L} {P} LP) + → (mx : MaximumFilter {L} {P} LP F0 ) → ultra-filter ( MaximumFilter.mf mx ) +max→ultra {L} {P} LP CAP F0 mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where mf = MaximumFilter.mf mx ultra : {p : HOD} → L ∋ p → L ∋ (P \ p) → (filter mf ∋ p) ∨ (filter mf ∋ (P \ p)) ultra {p} Lp Lnp with ODC.∋-p O (filter mf) p ... | yes y = case1 y ... | no np = case2 (subst (λ k → k ∋ (P \ p)) F=mf F∋P-p) where F : HOD - F = record { od = record { def = λ x → odef L x ∧ Fp {L} {P} LP mx (& p) x } + F = record { od = record { def = λ x → odef L x ∧ Fp {L} {P} LP F0 mx (& p) x } ; odmax = & L ; <odmax = λ lt → odef< (proj1 lt) } mu01 : {r : HOD} {q : HOD} → L ∋ q → F ∋ r → r ⊆ q → F ∋ q mu01 {r} {q} Lq ⟪ Lr , record { y = y ; mfy = mfy ; y-p⊂x = y-p⊂x } ⟫ r⊆q = ⟪ Lq , record { y = y ; mfy = mfy ; y-p⊂x = mu03 } ⟫ where @@ -222,11 +224,11 @@ mu03 : (* x \ * (& p)) ⊆ * x mu03 {z} ⟪ xz , _ ⟫ = xz F∋P-p : F ∋ (P \ p ) - F∋P-p = ⟪ Lnp , record { y = y ; mfy = mxy ; y-p⊂x = mu30 } ⟫ where - mu30 : (* y \ * (& p)) ⊆ * (& (P \ p)) + F∋P-p = ⟪ Lnp , record { y = ? ; mfy = ? ; y-p⊂x = mu30 } ⟫ where + mu30 : (* ? \ * (& p)) ⊆ * (& (P \ p)) mu30 {z} ⟪ yz , ¬pz ⟫ = subst (λ k → odef k z) (sym *iso) ( ⟪ Pz , (λ pz → ¬pz (subst (λ k → odef k z) (sym *iso) pz )) ⟫ ) where Pz : odef P z - Pz = LP (f⊆L mf mxy) _ yz + Pz = LP (f⊆L mf ? ) _ yz FisProper : ¬ (filter FisFilter ∋ od∅) -- if F contains p, p is in mf which contract np FisProper ⟪ L0 , record { y = z ; mfy = mfz ; y-p⊂x = z-p⊂x } ⟫ = ⊥-elim ( np (filter1 mf Lp (subst (λ k → odef (filter mf) k) (sym &iso) mfz) mu31) ) where @@ -245,8 +247,8 @@ ultra→max : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (U : Filter {L} {P} LP) → ultra-filter U → MaximumFilter LP -ultra→max {L} {P} LP NG CAP U u = record { mf = U ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where + → (U : Filter {L} {P} LP) → ultra-filter U → MaximumFilter LP U +ultra→max {L} {P} LP NG CAP U u = record { mf = U ; F⊆mf = ? ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where is-maximum : (F : Filter {L} {P} LP) → (¬ (filter F ∋ od∅)) → (U⊂F : filter U ⊂ filter F ) → ⊥ is-maximum F Prop ⟪ U<F , U⊆F ⟫ = Prop f0 where GT : HOD @@ -313,8 +315,8 @@ fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (is-filter.f⊆L (proj1 lt )) ) F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F : Filter {L} {P} LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP -F→Maximum {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = mf + → (F : Filter {L} {P} LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F +F→Maximum {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = mf ; F⊆mf = ? ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( is-filter.proper imf) ; is-maximum = {!!} } where FX : HOD FX = F⊆X {L} {P} LP F @@ -344,7 +346,6 @@ F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → (0<F : o∅ o< & (filter F)) → (proper : ¬ (filter F ∋ od∅)) → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )) -F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) - {& (filter F)} ? -- (MaximumFilter.proper (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )) +F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP F (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )