Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 806:473825abd767
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Aug 2022 12:56:15 +0900 |
parents | 9d97134d0a93 |
children | 2141154c521b |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Aug 12 09:02:51 2022 +0900 +++ b/src/zorn.agda Fri Aug 12 12:56:15 2022 +0900 @@ -699,24 +699,24 @@ not-sup : IsSup A (UnionCF A f mf ay supf0 x) ax no-extension : ¬ xSUP → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf0 ; sup = sup - ; initial = pinit ; chain∋init = pcy ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf - ; chain⊆A = λ lt → proj1 lt ; f-next = pnext ; f-total = ptotal } where - sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf0 z) + no-extension ¬sp=x = record { supf = supf1 ; sup = sup + ; initial = ? ; chain∋init = ? ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf + ; chain⊆A = λ lt → proj1 lt ; f-next = ? ; f-total = ? } where + sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) sup {z} z≤x with trio< z px - ... | tri< a ¬b ¬c = ZChain.sup zc (o<→≤ a) - ... | tri≈ ¬a b ¬c = ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) - ... | tri> ¬a ¬b c = ZChain.sup zc ? + ... | tri< a ¬b ¬c = ? -- ZChain.sup zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = ? -- ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) + ... | tri> ¬a ¬b c = ? sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsSup A (UnionCF A f mf ay supf0 (osuc b)) ab → supf0 b ≡ b + b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b sup=u {b} ab b<x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) is-sup - ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) is-sup + ... | tri< a ¬b ¬c = ? -- ZChain.sup=u zc ab (o<→≤ a) is-sup + ... | tri≈ ¬a b ¬c = ? -- ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) is-sup ... | tri> ¬a ¬b c = ? - csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf0 b) (supf0 b) + csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) csupf {b} b≤x with trio< b px - ... | tri< a ¬b ¬c = ZChain.csupf zc (o<→≤ a) - ... | tri≈ ¬a b ¬c = ZChain.csupf zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) + ... | tri< a ¬b ¬c = ? -- ZChain.csupf zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = ? -- ZChain.csupf zc (subst (λ k → k o≤ px) (sym b) o≤-refl ) ... | tri> ¬a ¬b px<b = ? where -- px< b ≤ x -- b ≡ x, supf x ≡ sp1 , ¬ x ≡ sp1 @@ -724,7 +724,7 @@ zc30 with osuc-≡< b≤x ... | case1 eq = sym (eq) ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) - sis : {z : Ordinal} (z≤x : z o≤ x) → supf0 z ≡ & (SUP.sup (sup z≤x)) + sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) sis = ? zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* x)