Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1008:47c0f8fa7b0c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 20 Nov 2022 09:29:56 +0900 |
parents | 88fae58f89f5 |
children | 7c39cae23803 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Nov 20 08:36:24 2022 +0900 +++ b/src/zorn.agda Sun Nov 20 09:29:56 2022 +0900 @@ -532,25 +532,33 @@ supfa = ZChain.supf za supfb = ZChain.supf zb ind : (x : Ordinal) → ((w : Ordinal) → w o< x → w o≤ xa → supfa w ≡ supfb w) → x o≤ xa → supfa x ≡ supfb x - ind x prev x≤xa = ? where - sax=m : supfa x ≡ MinSUP.sup (ZChain.minsup za x≤xa ) - sax=m = ZChain.supf-is-minsup za x≤xa - sbx=m : supfb x ≡ MinSUP.sup (ZChain.minsup zb (OrdTrans x≤xa xa≤xb )) - sbx=m = ZChain.supf-is-minsup zb (OrdTrans x≤xa xa≤xb ) + ind x prev x≤xa = sxa=sxb where + ma = ZChain.minsup za x≤xa + mb = ZChain.minsup zb (OrdTrans x≤xa xa≤xb ) + spa = MinSUP.sup ma + spb = MinSUP.sup mb + sax=spa : supfa x ≡ spa + sax=spa = ZChain.supf-is-minsup za x≤xa + sbx=spb : supfb x ≡ spb + sbx=spb = ZChain.supf-is-minsup zb (OrdTrans x≤xa xa≤xb ) sxa=sxb : supfa x ≡ supfb x sxa=sxb with trio< (supfa x) (supfb x) ... | tri≈ ¬a b ¬c = b ... | tri< a ¬b ¬c = ⊥-elim ( o≤> ( begin - supfb x ≡⟨ ? ⟩ - MinSUP.sup (ZChain.minsup zb (OrdTrans x≤xa xa≤xb )) ≤⟨ MinSUP.minsup ? ? ? ⟩ - MinSUP.sup (ZChain.minsup za x≤xa ) ≡⟨ ? ⟩ - supfa x ∎ ) a ) where open o≤-Reasoning O + supfb x ≡⟨ sbx=spb ⟩ + spb ≤⟨ MinSUP.minsup mb (MinSUP.asm ma) (λ {z} uzb → MinSUP.x≤sup ma (z53 uzb)) ⟩ + spa ≡⟨ sym sax=spa ⟩ + supfa x ∎ ) a ) where + open o≤-Reasoning O + z53 : {z : Ordinal } → odef (UnionCF A f mf ay (ZChain.supf zb) x) z → odef (UnionCF A f mf ay (ZChain.supf za) x) z + z53 ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ + z53 ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u u<x ? ? ⟫ ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ( begin - supfa x ≡⟨ ? ⟩ - MinSUP.sup (ZChain.minsup za x≤xa ) ≤⟨ MinSUP.minsup ? ? ? ⟩ - MinSUP.sup (ZChain.minsup zb (OrdTrans x≤xa xa≤xb )) ≡⟨ ? ⟩ + supfa x ≡⟨ sax=spa ⟩ + spa ≤⟨ MinSUP.minsup ma (MinSUP.asm mb) (λ uza → MinSUP.x≤sup mb ?) ⟩ + spb ≡⟨ sym sbx=spb ⟩ supfb x ∎ ) c ) where open o≤-Reasoning O UChain⊆ : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)