Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 829:4822758b8bf8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Aug 2022 10:08:14 +0900 |
parents | 802d70b7ea01 |
children | 507f6582c31d |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Aug 19 09:52:27 2022 +0900 +++ b/src/zorn.agda Fri Aug 19 10:08:14 2022 +0900 @@ -327,7 +327,7 @@ zc07 = subst (λ k → k o≤ supf b) (sym su=ss) (supf-mono (o<→≤ s<b) ) zc08 : u o≤ b zc08 with osuc-≡< zc07 - ... | case1 su=sb = ⊥-elim ( o<¬≡ (trans ? su=sb ) ss<sb ) + ... | case1 su=sb = ⊥-elim ( o<¬≡ (trans (sym su=ss) su=sb ) ss<sb ) ... | case2 lt = o<→≤ (supf-inject lt ) ... | case2 lt = o<→≤ (ordtrans (supf-inject lt) s<b) zc01 (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where @@ -393,7 +393,7 @@ ... | case1 eq = subst (λ k → * b < k ) eq ct00 ... | case2 lt = IsStrictPartialOrder.trans POO ct00 lt ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) with trio< ua ub - ... | tri< a₁ ¬b ¬c with ChainP.order supb ? fca + ... | tri< a₁ ¬b ¬c with ChainP.order supb (subst₂ (λ j k → j o< k ) (sym (ChainP.supu=u supa )) (sym (ChainP.supu=u supb )) a₁) fca ... | case1 eq with s≤fc (supf ub) f mf fcb ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * a ≡ * b @@ -410,7 +410,7 @@ ... | case2 lt = IsStrictPartialOrder.trans POO ct03 lt ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri≈ ¬a eq ¬c = fcn-cmp (supf ua) f mf fca (subst (λ k → FClosure A f k b ) (cong supf (sym eq)) fcb ) - ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri> ¬a ¬b c with ChainP.order supa ? fcb + ct-ind xa xb {a} {b} (ch-is-sup ua ua<x supa fca) (ch-is-sup ub ub<x supb fcb) | tri> ¬a ¬b c with ChainP.order supa (subst₂ (λ j k → j o< k ) (sym (ChainP.supu=u supb )) (sym (ChainP.supu=u supa )) c) fcb ... | case1 eq with s≤fc (supf ua) f mf fca ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * a ≡ * b @@ -758,7 +758,7 @@ ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ no-extension : ¬ xSUP → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf1 ; sup = sup + no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = ? ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = ? ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where UnionCFR⊆ : {z0 z1 : Ordinal} → z0 o≤ z1 → z0 o< x → UnionCF A f mf ay supf1 z0 ⊆' UnionCF A f mf ay supf0 z1 @@ -835,7 +835,7 @@ ... | case1 pr = no-extension {!!} -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) ... | case1 is-sup = -- x is a sup of zc - record { supf = psupf1 ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = ? ; sup=u = {!!} + record { supf = psupf1 ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = ? ; sup=u = {!!} ; supf-mono = ? ; initial = {!!} ; chain∋init = {!!} ; sup = {!!} ; supf-is-sup = {!!} } where supx : SUP A (UnionCF A f mf ay supf0 x) supx = record { sup = * x ; as = subst (λ k → odef A k ) {!!} ax ; x<sup = {!!} } @@ -933,7 +933,7 @@ no-extension : ¬ xSUP → ZChain A f mf ay x no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = sup=u - ; sup = sup ; supf-is-sup = sis + ; sup = sup ; supf-is-sup = sis ; supf-mono = ? ; csupf = ? ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z @@ -985,7 +985,7 @@ ... | case1 pr = no-extension {!!} ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = supf1 ; sup=u = {!!} - ; sup = {!!} ; supf-is-sup = {!!} + ; sup = {!!} ; supf-is-sup = {!!} ; supf-mono = ? ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = {!!} } -- where -- x is a sup of (zc ?) ... | case2 ¬x=sup = no-extension {!!} -- x is not f y' nor sup of former ZChain from y -- no extention