Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 15:497152f625ee
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 May 2019 03:52:42 +0900 |
parents | e11e95d5ddee |
children | ac362cc8b10f |
files | constructible-set.agda |
diffstat | 1 files changed, 14 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Tue May 14 03:38:26 2019 +0900 +++ b/constructible-set.agda Tue May 14 03:52:42 2019 +0900 @@ -88,26 +88,14 @@ max (Suc x) Zero = (Suc x) max (Suc x) (Suc y) = Suc ( max x y ) -lvconv : { lx ly : Nat } → lx > ly → lx ≡ (max lx ly) -lvconv {Zero} {Zero} () -lvconv {Zero} {Suc ly} () -lvconv {Suc lx} {Zero} (s≤s lt) = refl -lvconv {Suc lx} {Suc ly} (s≤s lt) = cong ( λ x → Suc x ) ( lvconv lt ) +maxα> : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → lx > ly → Ordinal {n} lx +maxα> x y _ = x -olconv : {n : Level } → { lx ly : Nat } → Ordinal {n} ly → lx < ly → Ordinal {n} (max lx ly) -olconv {n} {lx} {ly} (Φ {x}) lt = Φ -olconv {n} {lx} {ly} (T-suc x) lt = T-suc (olconv x lt) -olconv {n} {lx} {Suc lv} (ℵ lv) lt = {!!} - -maxα : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → Ordinal {n} (max lx ly) -maxα x y with triO x y -maxα Φ y | tri< a ¬b ¬c = Φ -maxα (T-suc x) y | tri< a ¬b ¬c = olconv x a -maxα (ℵ lv) y | tri< a ¬b ¬c = {!!} -maxα x y | tri> ¬a ¬b c = {!!} -maxα Φ y | tri≈ ¬a b ¬c = Φ -maxα (T-suc x) y | tri≈ ¬a b ¬c = T-suc {!!} -maxα (ℵ lv) y | tri≈ ¬a b ¬c = {!!} +maxα= : {n : Level } → { lx : Nat } → Ordinal {n} lx → Ordinal {n} lx → Ordinal {n} lx +maxα= x y with triOonSameLevel x y +maxα= x y | tri< a ¬b ¬c = y +maxα= x y | tri≈ ¬a b ¬c = x +maxα= x y | tri> ¬a ¬b c = x -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' @@ -124,7 +112,7 @@ open ConstructibleSet data _c∋_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where + Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where c> : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } (ta : Constructible {n} {lv} α ) ( tx : Constructible {n} {lv'} α' ) → α' o< α → ta c∋ tx xself-fsub : {lv : Nat} {α : Ordinal {n} lv } @@ -136,10 +124,13 @@ _∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n a ∋ x = constructible a c∋ constructible x +transitiveness : {n : Level} → (a b c : ConstructibleSet {n}) → a ∋ b → b ∋ c → a ∋ c +transitiveness = {!!} + data _c≈_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where - crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) - feq : {lv : Nat} {α : Ordinal {n} lv } + Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where + crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) + feq : {lv : Nat} {α : Ordinal {n} lv } → ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → (∀ ( x : Ordinal {n} lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁)