Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1259:4993a95d3fc8
... filter definition
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2023 11:33:20 +0900 |
parents | 04fc80af6f77 |
children | 8a8052df5254 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 17 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Fri Mar 17 00:33:43 2023 +0900 +++ b/src/generic-filter.agda Fri Mar 17 11:33:20 2023 +0900 @@ -152,15 +152,15 @@ record Expansion (L : HOD) {p : HOD } (dense : HOD) (Lp : L ∋ p) : Set (Level.suc n) where field - expansion : HOD - dense∋exp : dense ∋ expansion - p⊆exp : p ⊆ expansion + exp : HOD + D∋exp : dense ∋ exp + p⊆exp : p ⊆ exp record Dense {L P : HOD } (LP : L ⊆ Power P) : Set (Level.suc n) where field dense : HOD d⊆P : dense ⊆ L - has-expansion : {p : HOD} → (Lp : L ∋ p) → Expansion L dense Lp + has-exp : {p : HOD} → (Lp : L ∋ p) → Expansion L dense Lp record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where field @@ -241,14 +241,14 @@ ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where L∋pn : L ∋ * (find-p L C an (& p0)) L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an ) - exp = has-expansion D L∋pn - L∋df : L ∋ ( expansion exp ) - L∋df = (d⊆P D) (dense∋exp exp) - pn∋df : (* (ctl→ C an)) ∋ ( expansion exp) - pn∋df = subst (λ k → odef k (& ( expansion exp))) d=an (dense∋exp exp ) - pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (expansion exp))) y - pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (p⊆exp exp py) - fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (expansion exp)) + ex = has-exp D L∋pn + L∋df : L ∋ ( exp ex ) + L∋df = (d⊆P D) (D∋exp ex) + pn∋df : (* (ctl→ C an)) ∋ ( exp ex) + pn∋df = subst (λ k → odef k (& ( exp ex))) d=an (D∋exp ex ) + pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (exp ex))) y + pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (p⊆exp ex py) + fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (exp ex)) fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫ fd10 : PGHOD an L C (find-p L C an (& p0)) =h= od∅ fd10 = ≡o∅→=od∅ y @@ -297,22 +297,22 @@ D⊆PP : D ⊆ Power P D⊆PP {x} ⟪ Lx , ngx ⟫ = LPP Lx DD : Dense {L} {P} LPP - DD = record { dense = D ; d⊆P = proj1 ; has-expansion = exp } where + DD = record { dense = D ; d⊆P = proj1 ; has-exp = exp } where exp : {p : HOD} → (Lp : L ∋ p) → Expansion L D Lp exp {p} Lp = exp1 where q : HOD q = NotCompatible.q (NC Lp) r : HOD r = NotCompatible.r (NC Lp) - Lr : L ∋ r - Lr = NotCompatible.Lr (NC Lp) Lq : L ∋ q Lq = NotCompatible.Lq (NC Lp) + Lr : L ∋ r + Lr = NotCompatible.Lr (NC Lp) exp1 : Expansion L D Lp exp1 with ODC.p∨¬p O (rgf ∋ q) - ... | case2 ngq = record { expansion = q ; dense∋exp = ⟪ Lq , ngq ⟫ ; p⊆exp = NotCompatible.p⊆q (NC Lp)} + ... | case2 ngq = record { exp = q ; D∋exp = ⟪ Lq , ngq ⟫ ; p⊆exp = NotCompatible.p⊆q (NC Lp)} ... | case1 gq with ODC.p∨¬p O (rgf ∋ r) - ... | case2 ngr = record { expansion = r ; dense∋exp = ⟪ Lr , ngr ⟫ ; p⊆exp = NotCompatible.p⊆r (NC Lp)} + ... | case2 ngr = record { exp = r ; D∋exp = ⟪ Lr , ngr ⟫ ; p⊆exp = NotCompatible.p⊆r (NC Lp)} ... | case1 gr = ⊥-elim ( ll02 ⟪ ? , ? ⟫ ) where ll02 : ¬ ( (q ⊆ p) ∧ (r ⊆ p) ) ll02 = NotCompatible.¬compat (NC Lp) p ?