Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1306:4ad33efd8486
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 08 Jun 2023 18:18:15 +0900 |
parents | 81f66cec617e |
children | 71652ee117a7 |
files | src/bijection.agda |
diffstat | 1 files changed, 13 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Thu Jun 08 11:21:20 2023 +0900 +++ b/src/bijection.agda Thu Jun 08 18:18:15 2023 +0900 @@ -557,29 +557,20 @@ cbn : ℕ → ℕ cbn n = fun→ cn (g (f (fun← an n))) - cbn-mono1 : {i : ℕ} → cbn i < cbn (suc i) - cbn-mono1 {i} with cbn i | inspect cbn i | lb (cbn i) - ... | zero | record {eq = eq1 } | s with is-A (fun← cn (cbn i)) | is-B (fun← cn (cbn i)) - ... | yes isA | yes isB = ? - ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) - ... | no nisA | yes isB = ⊥-elim ( nisA record { a = fun← an i ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) refl ) } ) - ... | no nisA | no nisB = ⊥-elim ( nisA record { a = fun← an i ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) refl ) } ) - cbn-mono1 {i} | suc t | record {eq = eq1 } | s with is-A (fun← cn (suc t)) | is-B (fun← cn (suc t)) - ... | yes isA | yes isB = ? -- <-transʳ z≤n ≤-refl - ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) - ... | no nisA | yes isB = ⊥-elim ( nisA record { a = fun← an i ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) eq1 ) } ) - ... | no nisA | no nisB = ⊥-elim ( nisA record { a = fun← an i ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) eq1 ) } ) - - cbn-mono : {i j : ℕ} → i < j → cbn i < cbn j - cbn-mono {i} {suc j} (s≤s i≤j) with <-∨ {i} {j} (<-transʳ i≤j a<sa ) - ... | case1 refl = cbn-mono1 - ... | case2 lt = <-trans (cbn-mono {i} {j} lt) cbn-mono1 - cb< : (n : ℕ) → CB.cb (lb (cbn n)) < CB.cb (lb (cbn (suc n))) - cb< n = cb00 _ _ _ refl refl where - cb00 : (n i j : ℕ) → i ≡ cbn n → j ≡ cbn (suc n) → CB.cb (lb i) < CB.cb (lb j) - cb00 zero i j eq eq1 = ? - cb00 (suc n) i j eq eq1 = <-trans (cb00 n i j ? ? ) ? + cb< n = ? where + cb00 : (i : ℕ) → i ≤ CB.cb (lb (cbn (suc n))) → CB.cb (lb (cbn n)) < CB.cb (lb (cbn (suc n))) + cb00 i i≤csn with inspect cbn (suc n) | lb (cbn (suc n)) + cb00 zero lt | record {eq = eq1 } | s with is-A (fun← cn (cbn 0)) | is-B (fun← cn (cbn 0)) + ... | yes isA | yes isB = ? + ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) + ... | no nisA | yes isB = ⊥-elim ( nisA record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) refl ) } ) + ... | no nisA | no nisB = ⊥-elim ( nisA record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) refl ) } ) + cb00 (suc c) lt | record {eq = eq1 } | s with is-A (fun← cn (suc c)) | is-B (fun← cn (suc c)) + ... | yes isA | yes isB = ? -- <-transʳ z≤n ≤-refl + ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) + ... | no nisA | yes isB = ⊥-elim ( nisA record { a = fun← an (suc n) ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) ? ) } ) + ... | no nisA | no nisB = ⊥-elim ( nisA record { a = fun← an (suc n) ; fa=c = trans (sym (fiso← cn _)) ( cong (fun← cn) ? ) } ) cb<0 : 0 < CB.cb (lb (cbn 0)) cb<0 with cbn 0 | inspect cbn 0