changeset 918:4c33f8383d7d

supf px o< px is in csupf
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 15 Oct 2022 20:05:34 +0900
parents 3105feb3c4e1
children 213f12f27003
files src/zorn.agda
diffstat 1 files changed, 12 insertions(+), 20 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Wed Oct 12 11:11:42 2022 +0900
+++ b/src/zorn.agda	Sat Oct 15 20:05:34 2022 +0900
@@ -796,6 +796,9 @@
           zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) 
           px<x : px o< x
           px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc
+          opx=x : osuc px ≡ x
+          opx=x = Oprev.oprev=x op
+
           zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px
           zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt 
 
@@ -1076,9 +1079,7 @@
                      --  z1 ≡ px , supf0 px o< px   .. px o< z1, x o≤ z1 ...  supf1 z1 ≡ sp1
                      --  z1 ≡ px , supf0 px ≡  px
                      psz1≤px :  supf1 z1 o≤ px
-                     psz1≤px =  subst (λ k → supf1 z1 o< k ) (sym (Oprev.oprev=x op)) sz1<x 
-                     cs01 : supf0 px o< px → odef (UnionCF A f mf ay supf0 px) (supf0 px)
-                     cs01 spx<px = ZChain.csupf zc spx<px
+                     psz1≤px =  subst (λ k → supf1 z1 o< k ) (sym opx=x) sz1<x 
                      csupf2 :  odef (UnionCF A f mf ay supf1 x) (supf1 z1) 
                      csupf2 with  trio< z1 px | inspect supf1 z1
                      csupf2 | tri< a ¬b ¬c | record { eq = eq1 } with osuc-≡< psz1≤px
@@ -1095,24 +1096,15 @@
                              supf1 px ≡⟨ sym sfz=sfpx ⟩
                              supf1 z1 ≡⟨ sf1=sf0 (o<→≤ a)  ⟩
                              supf0 z1 ∎ where open ≡-Reasoning
-                     ... | case2 sfz<sfpx =  ? ---   supf0 z1 o< supf0 px
+                     ... | case2 sfz<sfpx = ⊥-elim ( ¬p<x<op ⟪ cs05 , cs06 ⟫  )  where
+                            --- supf1 z1 ≡ px , z1 o< px ,  px ≡ supf0 z1 o< supf0 px o< x
+                           cs05 : px o< supf0 px
+                           cs05 = subst₂ ( λ j k → j o< k ) sfz=px (sf1=sf0 o≤-refl ) sfz<sfpx
+                           cs06 : supf0 px o< osuc px
+                           cs06 = subst (λ k → supf0 px o< k ) (sym opx=x) sfpx<x 
                      csupf2 | tri≈ ¬a b ¬c | record { eq = eq1 } =  zc12 (case2 (init (ZChain.asupf zc) (cong supf0 (sym b))))
-                     csupf2 | tri> ¬a ¬b px<z1 | record { eq = eq1 }  with trio< sp1 px
-                     ... | tri< sp1<px ¬b ¬c = ? --  sp1 o< px, supf0 sp1 ≡  supf0 px, sp1 o< z1
-                     ... | tri≈ ¬a sp1=px ¬c = ⟪ MinSUP.asm sup1 , ch-is-sup (supf1 z1) (subst (λ k → k o< x) (sym eq1) sz1<x)
-                             record { fcy<sup = ? ; order = ? ; supu=u = supu=u } (init asupf1 (trans supu=u eq1) ) ⟫ where 
-                          --  supf1 z1 ≡ sp1, px o< z1, sp1 o< x  -- sp1 o< z1
-                          --  supf1 sp1 o≤ supf1 z1 ≡ sp1 o< z1
-                          asm : odef A (supf1 z1)
-                          asm =  subst (λ k → odef A k ) (sym (sf1=sp1 px<z1)) ( MinSUP.asm sup1) 
-                          cs05 : odef (UnionCF A f mf ay supf1 x) (supf1 sp1) 
-                          cs05 = zc12 (case2 (init (ZChain.asupf zc) ( begin
-                             supf0 px ≡⟨ sym (sf1=sf0 o≤-refl )  ⟩
-                             supf1 px ≡⟨ cong supf1 (sym sp1=px)  ⟩
-                             supf1 sp1 ∎  ))) where open ≡-Reasoning
-                          supu=u : supf1 (supf1 z1) ≡ supf1 z1
-                          supu=u = ?
-                     ... | tri> ¬a ¬b px<sp1 = ⊥-elim (¬p<x<op ⟪ px<sp1 , subst (λ k → sp1 o< k) (sym (Oprev.oprev=x op)) sz1<x  ⟫ )
+                     csupf2 | tri> ¬a ¬b px<z1 | record { eq = eq1 } = ? -- ⊥-elim ( ¬p<x<op ⟪ px<z1 , subst (λ k → z1 o< k) (sym opx=x) z1<x ⟫ )
+
 
           zc4 : ZChain A f mf ay x     --- x o≤ supf px 
           zc4 with trio< x (supf0 px)