Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1134:4c85ce2794e9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Jan 2023 07:37:27 +0900 |
parents | c2c0cf7f2d7e |
children | 464efeeb988e |
files | src/Topology.agda src/filter.agda |
diffstat | 2 files changed, 41 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Thu Jan 12 20:52:47 2023 +0900 +++ b/src/Topology.agda Fri Jan 13 07:37:27 2023 +0900 @@ -286,6 +286,10 @@ -- Ultra Filter has limit point +--- F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) +-- → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → (0<F : o∅ o< & (filter F)) → (proper : ¬ (filter F ∋ od∅)) +-- → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) + record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FL : filter F ∋ P) : Set (suc (suc n)) where field @@ -299,8 +303,12 @@ → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) → UFLP TP LP F FP FIP→UFLP {P} TP fip {L} LP F FP = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } where - uf : ultra-filter {L} {P} {LP} F - uf = {!!} + MX : MaximumFilter ? + MX = F→Maximum {L} {P} LP ? ? F ? ? ? + MF : Filter LP + MF = MaximumFilter.mf MX + uf : ultra-filter {L} {P} {LP} MF + uf = F→ultra {L} {P} LP ? ? F ? ? ? fip03 : {z : HOD} → filter F ∋ z → z ⊆ P fip03 {z} fz {x} zx = LP ( f⊆L F fz ) x (subst (λ k → odef k x) (sym *iso) zx ) CF : Ordinal @@ -315,14 +323,14 @@ fip01 {C} {x} CCF (gi Cx) = {!!} -- filter is proper .i.e it contains no od∅ fip01 {C} {.(& (* _ ∩ * _))} CCF (g∩ sb sb₁) = {!!} fip02 : {o : Ordinal} → odef (OS TP) o → odef (* o) (FIP.limit fip fip00 CFP fip01) → * o ⊆ filter F - fip02 {p} oo ol {x} ox = fip06 where + fip02 {p} oo ol {x} ox = ? where fip04 : odef {!!} (FIP.limit fip fip00 CFP fip01) fip04 = FIP.is-limit fip fip00 CFP fip01 {!!} - fip05 : ( filter F ∋ (* x) ) ∨ ( filter F ∋ ( P \ (* x)) ) + fip05 : ( filter MF ∋ (* x) ) ∨ ( filter MF ∋ ( P \ (* x)) ) fip05 = ultra-filter.ultra uf {!!} {!!} - fip06 : odef (filter F) x + fip06 : odef (filter MF) x fip06 with fip05 - ... | case1 lt = subst (λ k → odef (filter F) k ) &iso lt + ... | case1 lt = subst (λ k → odef (filter MF) k ) &iso lt ... | case2 nlt = {!!}
--- a/src/filter.agda Thu Jan 12 20:52:47 2023 +0900 +++ b/src/filter.agda Fri Jan 13 07:37:27 2023 +0900 @@ -312,16 +312,39 @@ fx00 : {x : Ordinal } → is-filter LP x ∧ filter F ⊆ * x → x o< osuc (& L) fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (is-filter.f⊆L (proj1 lt )) ) -MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) +F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP -MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = {!!} ; proper = {!!} ; is-maximum = {!!} } where +F→Maximum {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = mf + ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( is-filter.proper imf) ; is-maximum = {!!} } where FX : HOD FX = F⊆X {L} {P} LP F FX∋F : odef FX (& (filter F)) FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = ? ; filter2 = ? ; proper = ? } , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ SUP⊆ : (B : HOD) → B ⊆ FX → IsTotalOrderSet B → SUP FX B SUP⊆ B B⊆FX OB = record { sup = Union B ; isSUP = record { ax = ? ; x≤sup = ? } } - mf01 : Maximal FX - mf01 = Zorn-lemma (∈∅< FX∋F) SUP⊆ + mx : Maximal FX + mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ + imf : is-filter {L} {P} LP (& (Maximal.maximal mx)) + imf = proj1 (Maximal.as mx) + mf00 : (* (& (Maximal.maximal mx))) ⊆ L + mf00 = is-filter.f⊆L imf + mf01 : { p q : HOD } → L ∋ q → (* (& (Maximal.maximal mx))) ∋ p → p ⊆ q → (* (& (Maximal.maximal mx))) ∋ q + mf01 {p} {q} Lq Fq p⊆q = is-filter.filter1 imf Lq Fq + (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) )) + mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx))) ∋ q → L ∋ (p ∩ q) + → (* (& (Maximal.maximal mx))) ∋ (p ∩ q) + mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso ( + is-filter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) + mf : Filter {L} {P} LP + mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00 + ; filter1 = mf01 + ; filter2 = mf02 } + + +F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) + → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → (0<F : o∅ o< & (filter F)) → (proper : ¬ (filter F ∋ od∅)) + → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )) +F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) + {& (filter F)} ? -- (MaximumFilter.proper (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ))