Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 699:4df0b36db305
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 12 Jul 2022 15:42:33 +0900 |
parents | 3837fa940cd9 |
children | 3de5a1fb8011 |
files | src/zorn.agda |
diffstat | 1 files changed, 3 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 12 15:29:41 2022 +0900 +++ b/src/zorn.agda Tue Jul 12 15:42:33 2022 +0900 @@ -556,35 +556,9 @@ zc0-b<x : (b : Ordinal ) → b o< x → b o< osuc px zc0-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt - -- if previous chain satisfies maximality, we caan reuse it - -- - no-extenion : ( {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → - HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → - * a < * b → odef (ZChain.chain zc ) b ) → ZChain A f mf ay zc0 x - no-extenion is-max = record { initial = ZChain.initial zc ; chain∋init = ZChain.chain∋init zc } zc4 : ZChain A f mf ay zc0 x - zc4 with ODC.∋-p O A (* x) - ... | no noax = no-extenion zc1 where -- ¬ A ∋ p, just skip - zc1 : {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain zc ) a → b o< osuc x → (ab : odef A b) → - HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → - * a < * b → odef (ZChain.chain zc ) b - zc1 {a} {b} z<x za b<ox ab P a<b with osuc-≡< b<ox - ... | case1 eq = ⊥-elim ( noax (subst (λ k → odef A k) (trans eq (sym &iso)) ab ) ) - ... | case2 lt = ZChain.is-max zc za (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt ) ab P a<b - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) ax f ) - -- we have to check adding x preserve is-max ZChain A y f mf zc0 x - ... | case1 pr = no-extenion zc7 where -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next - chain0 = ZChain.chain zc - zc7 : {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain zc ) a → b o< osuc x → (ab : odef A b) → - HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → - * a < * b → odef (ZChain.chain zc ) b - zc7 {a} {b} z<x za b<ox ab P a<b with osuc-≡< b<ox - ... | case2 lt = ZChain.is-max zc za (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt ) ab P a<b - ... | case1 b=x = subst (λ k → odef chain0 k ) (trans (sym (HasPrev.x=fy pr )) (trans &iso (sym b=x)) ) ( ZChain.f-next zc (HasPrev.ay pr)) - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) - ... | case1 is-sup = -- x is a sup of zc - record { chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal + zc4 = record { chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal ; initial = pinit ; chain∋init = pcy ; is-max = p-ismax } where pchain : HOD pchain = UnionCF A f mf ay (ZChain1.supf (zc0 (& A))) (& A) @@ -616,19 +590,9 @@ b o< osuc x → (ab : odef A b) → ( HasPrev A pchain ab f ∨ IsSup A pchain ab ) → * a < * b → odef pchain b - p-ismax {a} {b} ua b<ox ab (case1 hasp) a<b = ? - p-ismax {a} {b} ua b<ox ab (case2 sup) a<b = ? + p-ismax {a} {b} ua b<ox ab (case1 hasp) a<b = ⟪ ab , ? ⟫ + p-ismax {a} {b} ua b<ox ab (case2 sup) a<b = ⟪ ab , ? ⟫ - ... | case2 ¬x=sup = no-extenion z18 where -- x is not f y' nor sup of former ZChain from y -- no extention - z18 : {a b z : Ordinal} → (z<x : z o< x) → odef (ZChain.chain zc ) a → b o< osuc x → (ab : odef A b) → - HasPrev A (ZChain.chain zc ) ab f ∨ IsSup A (ZChain.chain zc ) ab → - * a < * b → odef (ZChain.chain zc ) b - z18 {a} {b} z<x za b<x ab p a<b with osuc-≡< b<x - ... | case2 lt = ZChain.is-max zc za (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) lt ) ab p a<b - ... | case1 b=x with p - ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) - ... | case2 b=sup = ⊥-elim ( ¬x=sup record { - x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy ) } ) ... | no op = zc5 where uzc : {z : Ordinal} → (u : UChain A f mf ay (ZChain1.supf (zc0 (& A))) x z ) → ZChain A f mf ay zc0 (UChain.u u) uzc {z} u = prev (UChain.u u) (UChain.u<x u)