Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 487:4fa7c5104b68
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 07 Apr 2022 19:08:15 +0900 |
parents | d2f204c5d67b |
children | d2d704ab1a33 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Apr 07 16:23:54 2022 +0900 +++ b/src/zorn.agda Thu Apr 07 19:08:15 2022 +0900 @@ -74,9 +74,9 @@ record ZChain ( A : HOD ) (y : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field - fb : Ordinal → HOD - A∋fb : (ox : Ordinal ) → A ∋ fb ox - monotonic : {ox oy : Ordinal } → oy o< y → ox o< oy → fb ox < fb oy + fb : (x : Ordinal ) → x o< y → HOD + A∋fb : (ox : Ordinal ) → (x<y : ox o< y ) → A ∋ fb ox x<y + monotonic : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ox o< oz → fb ox x<y < fb oz z<y Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A @@ -102,27 +102,28 @@ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b -- ZChain is not compatible with the SUP condition - record BX (y : Ordinal) (fb : Ordinal → HOD ) : Set n where + record BX (x y : Ordinal) (fb : ( x : Ordinal ) → (x o< y ) → HOD ) : Set n where field bx : Ordinal - is-fb : y ≡ & (fb bx ) + bx<y : bx o< y + is-fb : x ≡ & (fb bx bx<y ) B : (z : ZChain A (& A) _<_ ) → HOD - B z = record { od = record { def = λ x → BX x ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } - z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) + B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } + z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) {!!} z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal obx z {x} bx = BX.bx bx - obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) + obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) {!!} obx=fb z {x} bx = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (BX.is-fb bx)) B-is-total : (z : ZChain A (& A) _<_ ) → TotalOrderSet (B z) _<_ B-is-total z x y with trio< (obx z (is-elm x)) (obx z (is-elm y)) ... | tri< a ¬b ¬c = tri< z10 {!!} {!!} where z10 : elm x < elm y - z10 = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z {!!} a ) + z10 = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z {!!} {!!} a ) ... | tri≈ ¬a b ¬c = tri≈ {!!} {!!} {!!} ... | tri> ¬a ¬b c = tri> {!!} {!!} {!!} B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A - B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx)) } + B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) {!!} ) } ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A)