Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 438:50949196aa88
⊆-reduction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 25 Feb 2022 14:46:43 +0900 |
parents | 2b5d2072e1af |
children | fdcbf23ba2f9 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 23 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Tue Feb 22 23:37:07 2022 +0900 +++ b/src/generic-filter.agda Fri Feb 25 14:46:43 2022 +0900 @@ -62,7 +62,7 @@ is-Model : (x : Nat) → ctl→ x o< ctl-M ctl-iso→ : { x : Ordinal } → (lt : x o< ctl-M) → ctl→ (ctl← x lt ) ≡ x ctl-iso← : { x : Nat } → ctl← (ctl→ x ) (is-Model x) ≡ x - ctl-P⊆M : Power P ⊆ * ctl-M + ctl-P∈M : Power P ∈ * ctl-M -- we expect ¬ G ∈ * ctl-M, so ¬ P ∈ * ctl-M @@ -128,6 +128,25 @@ open _⊆_ +find-an :{P p : HOD} → (C : CountableModel P ) → odef (Power P) (& p) → Nat +find-an = ? + +found-an :{P p : HOD} → (C : CountableModel P ) → (pw : odef (Power P) (& p)) → * (ctl→ C (find-an C pw)) =h= p +found-an = ? + +record ⊆-reduce ( p : HOD ) : Set (suc n) where + field + next : HOD + is-small : next ⊆ p ∧ ( ¬ ( next =h= p )) + +⊆-induction : { ψ : (x : HOD) → Set (suc n) } + → (p : HOD) → ψ p + → (next : (x : HOD) → ψ x → ⊆-reduce x ) + → (ind : (x : HOD) → (m : ψ x) → ψ ( ⊆-reduce.next (next x m )) ) + → ψ od∅ +⊆-induction = ? + + P-GenericFilter : (P p0 : HOD ) → (C : CountableModel P) → GenericFilter P P-GenericFilter P p0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } @@ -152,8 +171,9 @@ find-p-⊆P (gr lt) {!!} (& y) {!!} (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = {!!} ; pn<gr = {!!} ; x∈PP = {!!} } where - -- ¬ p ⊆ a n ⊆ p m - -- a(n) ∈ M, ¬ (∃ q ∈ a(n) ∧ p(n) ⊆ q ) ∨ (∃ q ∈ a(n) ∧ p(n) ⊆ q ) + -- reduction : {ψ : (x : HOD) → x =h= od∅ → P x} → + -- q ∈ a(∃ n) ⊆ P → ( p n ⊆ q → PDHOD P p0 C ∋ q ) + -- ∨ (¬ (p n ⊆ q) → induction on (p n - q) PDNp : {!!} -- PD⊆⊆N P C (& p) PDNp = PD∋p f02 : {x : Ordinal} → odef q x → odef P x