Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 948:51556591c879
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 31 Oct 2022 18:34:06 +0900 |
parents | a028409f5ca2 |
children | efc833407350 |
files | src/zorn.agda |
diffstat | 1 files changed, 21 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Oct 31 15:36:58 2022 +0900 +++ b/src/zorn.agda Mon Oct 31 18:34:06 2022 +0900 @@ -1524,28 +1524,27 @@ not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 supf d) d (cf nmx) not-hasprev record { ax = ax ; y = y ; ay = ⟪ ua1 , ch-init fc ⟫ ; x=fy = x=fy } = ? - not-hasprev record { ax = ax ; y = y ; ay = ⟪ ua1 , ch-is-sup u u<x is-sup1 fc ⟫; x=fy = x=fy } = ? --- z29 : {mc d1 : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) --- → d1 ≡ MinSUP.sup spd --- → HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 supf d1) d1 (cf nmx) --- → ⊥ --- z29 {mc} {asc} spd d1=spd hp with HasPrev.ay hp --- ... | ⟪ ua1 , ch-init fc ⟫ = ? --- ... | ⟪ ua1 , ch-is-sup u u<x is-sup1 fc ⟫ = ? --- y : Ordinal --- y = HasPrev.y hp --- d1 : Ordinal --- d1 = MinSUP.sup spd -- supf d1 ≡ d --- z45 : (* (cf nmx (cf nmx y)) ≡ * d1) ∨ (* (cf nmx (cf nmx y)) < * d1) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) --- z45 p = subst (λ k → (* (cf nmx k) ≡ * d1) ∨ (* (cf nmx k) < * d1)) (sym (HasPrev.x=fy hp)) p --- z30 : * d1 < * (cf nmx d1) --- z30 = proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) --- z47 : * (cf nmx (cf nmx y)) < * d1 --- z47 = ? --- z24 : y << d1 --- z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) --- z46 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) --- z46 = z45 (case2 z47 ) + not-hasprev record { ax = ax ; y = y ; ay = ⟪ ua1 , ch-is-sup u u<x is-sup1 fc ⟫; x=fy = x=fy } = ⊥-elim ( <-irr z46 z30 ) where + z45 : (* (cf nmx (cf nmx y)) ≡ * d) ∨ (* (cf nmx (cf nmx y)) < * d) → (* (cf nmx d) ≡ * d) ∨ (* (cf nmx d) < * d) + z45 p = subst (λ k → (* (cf nmx k) ≡ * d) ∨ (* (cf nmx k) < * d)) (sym x=fy) p + z48 : supf mc << d + z48 = sc<<d {mc} asc spd + z47 : {mc d1 : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) + → * (cf nmx (cf nmx y)) < * d1 + z47 {mc} {d1} {asc} spd = ? + z30 : * d < * (cf nmx d) + z30 = proj1 (cf-is-<-monotonic nmx d (MinSUP.asm spd)) + z46 : (* (cf nmx d) ≡ * d) ∨ (* (cf nmx d) < * d) + z46 = z45 (case2 (z47 {mc} {d} {asc} spd )) + +-- ax : odef A d +-- y : Ordinal +-- ua1 : odef A y +-- u : Ordinal +-- u<x : supf u o< supf d +-- is-sup1 : ChainP A (cf nmx) (cf-is-≤-monotonic nmx) as0 supf u +-- fc : FClosure A (cf nmx) (supf u) y +-- x=fy : d ≡ cf nmx y sd=d : supf d ≡ d sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫