Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1383:51abc18e6f17
using clist is no good
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 23 Jun 2023 15:36:09 +0900 |
parents | 4ecb12396ebd |
children | 0d29328c0441 |
files | src/bijection.agda |
diffstat | 1 files changed, 27 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Fri Jun 23 13:20:00 2023 +0900 +++ b/src/bijection.agda Fri Jun 23 15:36:09 2023 +0900 @@ -614,10 +614,6 @@ ... | case1 eq = here ( trans (sym (fiso← cn _)) ( cong (fun← cn) eq )) ... | case2 (s≤s le) = there (lem00 j le) - -- cNL : (n : ℕ ) → NL n - -- cNL n = record { nlist = clist (c n) ; anyn = λ i le → clist-any n i le } - - ca-list : List C → ℕ ca-list [] = 0 ca-list (h ∷ t) with is-A h @@ -712,6 +708,24 @@ ca-list cl ∎ where open ≤-Reasoning + anygb : (b : B) → Any (_≡_ (g b)) (clist (c (fun→ cn (g b)))) + anygb = ? + + bton1 : B → ℕ + bton1 b = bton10 b (clist (c (fun→ cn (g b)))) ? where + bton10 : (b : B) → (x : List C) → Any (_≡_ (g b)) x → ℕ + bton10 b (h ∷ t) (here px) = count-B ( fun→ cn h ) + bton10 b (h ∷ t) (there ax) = bton10 b t ax + + anycb : (n : ℕ) → Any (λ c₁ → Is B C g c₁ ∧ (count-B (fun→ cn c₁) ≡ n)) (clist (c n)) + anycb = ? + + ntob1 : (n : ℕ) → B + ntob1 n = bton10 n (clist (c n)) ? where + bton10 : (n : ℕ) → (x : List C) → Any (λ c → Is B C g c ∧ (count-B (fun→ cn c) ≡ n)) x → B + bton10 n (h ∷ t) (here px) = Is.a (proj1 px) + bton10 n (h ∷ t) (there ax) = bton10 n t ax + record maxAC (n : ℕ) : Set where field ac : ℕ @@ -738,14 +752,20 @@ ... | yes isb | record { eq = eq1 } = record { b = Is.a isb ; cb = 0 ; b=cn = sym (Is.fa=c isb) ; cb=n = trans eq1 eq ; cb-inject = λ cb1 cb1eq → lem12 cb1 (subst (λ k → k ≡ count-B cb1) eq1 cb1eq) } where lem12 : (cb1 : ℕ) → 1 ≡ count-B cb1 → 0 ≡ cb1 - lem12 = ? + lem12 cb1 cbeq with <-cmp 0 cb1 + ... | tri≈ ¬a b ¬c = b + ... | tri< a ¬b ¬c = ? ... | no nisb | record { eq = eq1 } = ⊥-elim ( nat-≡< eq (s≤s z≤n ) ) lem07 n (suc i) eq with is-B (fun← cn (suc i)) | inspect count-B (suc i) ... | yes isb | record { eq = eq1 } = record { b = Is.a isb ; cb = suc i ; b=cn = sym (Is.fa=c isb) ; cb=n = trans eq1 eq ; cb-inject = λ cb1 cb1eq → lem12 cb1 (subst (λ k → k ≡ count-B cb1) eq1 cb1eq) } where lem12 : (cb1 : ℕ) → suc (count-B i) ≡ count-B cb1 → suc i ≡ cb1 - lem12 cb cbeq with CountB.cb-inject ( lem09 n (count-B n) ? refl ) - ... | t = ? + lem12 cb1 cbeq with <-cmp (suc i) cb1 + ... | tri< a ¬b ¬c = ? + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c₁ = ? + -- with CountB.cb-inject ( lem09 n (count-B n) ? refl ) + -- ... | t = ? ... | no nisb | record { eq = eq1 } = lem07 n i eq lem09 0 (suc j) (s≤s le) eq with ≤-∨ (s≤s le)