Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 972:520aff512969
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 07 Nov 2022 16:08:29 +0900 |
parents | 4fdf889ca95a |
children | 2a67cae517d8 |
files | src/zorn.agda |
diffstat | 1 files changed, 23 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Nov 07 10:23:53 2022 +0900 +++ b/src/zorn.agda Mon Nov 07 16:08:29 2022 +0900 @@ -861,8 +861,13 @@ sup1 = minsupP pchainpx pcha ptotal sp1 = MinSUP.sup sup1 - sfpx<sp1 : supf0 px <= sp1 - sfpx<sp1 = MinSUP.x≤sup sup1 (case2 (init (ZChain.asupf zc {px}) refl )) + sfpx<=sp1 : supf0 px <= sp1 + sfpx<=sp1 = MinSUP.x≤sup sup1 (case2 (init (ZChain.asupf zc {px}) refl )) + + sfpx≤sp1 : supf0 px o≤ sp1 + sfpx≤sp1 = subst ( λ k → k o≤ sp1) (sym (ZChain.supf-is-minsup zc o≤-refl )) + ( MinSUP.minsup (ZChain.minsup zc o≤-refl) (MinSUP.asm sup1) + (λ {x} ux → MinSUP.x≤sup sup1 (case1 ux)) ) -- -- supf0 px o≤ sp1 @@ -882,14 +887,14 @@ -- supf px ≡ px → UnionCF A f mf ay supf px ⊂ UnionCF A f mf ay supf x ≡ pchainx -- x < supf px → UnionCF A f mf ay supf px ≡ UnionCF A f mf ay supf x - zc43 : ( x o< sp1 ) ∨ ( sp1 o≤ x ) - zc43 with trio< x sp1 + zc43 : (x : Ordinal ) → ( x o< sp1 ) ∨ ( sp1 o≤ x ) + zc43 x with trio< x sp1 ... | tri< a ¬b ¬c = case1 a ... | tri≈ ¬a b ¬c = case2 (o≤-refl0 (sym b)) ... | tri> ¬a ¬b c = case2 (o<→≤ c) zc41 : ZChain A f mf ay x - zc41 with zc43 + zc41 with zc43 x zc41 | (case2 sp≤x ) = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ? ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = csupf1 } where -- supf0 px is included in the chain of sp1 @@ -1203,9 +1208,19 @@ cs08 = subst (λ k → k o< sp1 ) (proj1 p) (proj2 p ) cs09 : sp1 o< osuc px cs09 = subst ( λ k → sp1 o< k ) (sym (Oprev.oprev=x op)) sz1<x - - csupf2 | case2 (case1 p) = ? - csupf2 | case1 p = ? + csupf2 | case2 (case1 p) with trio< (supf0 px) sp1 -- ¬ (supf0 px o< sp1 -- sp1 o≤ spuf0 px) + ... | tri< a ¬b ¬c = ⊥-elim (p a) + ... | tri≈ ¬a b ¬c = ? + ... | tri> ¬a ¬b c = ⊥-elim ( o≤> sfpx≤sp1 c ) + csupf2 | case1 p with trio< (supf0 px) px -- ¬ (supf0 px ≡ px ) + ... | tri< sf0px<px ¬b ¬c = ? where + cs10 : odef (UnionCF A f mf ay supf0 px) (supf0 px) + cs10 = ZChain.csupf zc sf0px<px + ... | tri≈ ¬a b ¬c = ⊥-elim (p b) + ... | tri> ¬a ¬b px<sf0px = ? where + cs11 : px o< z1 → odef (UnionCF A f mf ay supf1 x) (supf1 z1) + cs11 px<z1 = ⊥-elim ( ¬p<x<op ⟪ px<sf0px , subst₂ (λ j k → j o< k ) refl (sym (Oprev.oprev=x op)) + (ordtrans≤-< (subst (λ k → supf0 px o< k) (cong osuc (sym (sf1=sp1 px<z1 ))) sfpx≤sp1 ) sz1<x) ⟫ ) zc41 | (case1 x<sp ) = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ?