Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 840:52bff0b4cb37
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Aug 2022 10:18:08 +0900 |
parents | 710574600659 |
children | 01361e10ad96 |
files | src/zorn.agda |
diffstat | 1 files changed, 67 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Aug 28 14:46:18 2022 +0900 +++ b/src/zorn.agda Mon Aug 29 10:18:08 2022 +0900 @@ -732,20 +732,41 @@ supf1 : Ordinal → Ordinal supf1 z with trio< z px ... | tri< a ¬b ¬c = ZChain.supf zc z - ... | tri≈ ¬a b ¬c = sp1 + ... | tri≈ ¬a b ¬c = ZChain.supf zc z ... | tri> ¬a ¬b c = sp1 pchain1 : HOD pchain1 = UnionCF A f mf ay supf1 x + ptotal1 : IsTotalOrderSet pchain1 + ptotal1 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where + uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) + uz01 = chain-total A f mf ay supf1 ( (proj2 ca)) ( (proj2 cb)) + pchain⊆A1 : {y : Ordinal} → odef pchain1 y → odef A y + pchain⊆A1 {y} ny = proj1 ny + pnext1 : {a : Ordinal} → odef pchain1 a → odef pchain1 (f a) + pnext1 {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫ + pnext1 {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫ + pinit1 : {y₁ : Ordinal} → odef pchain1 y₁ → * y ≤ * y₁ + pinit1 {a} ⟪ aa , ua ⟫ with ua + ... | ch-init fc = s≤fc y f mf fc + ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where + zc7 : y <= supf1 u + zc7 = ChainP.fcy<sup is-sup (init ay refl) + pcy1 : odef pchain1 y + pcy1 = ⟪ ay , ch-init (init ay refl) ⟫ + + -- zc100 : xSUP (UnionCF A f mf ay supf0 px) x → x ≡ sp1 + -- zc100 = ? + -- if previous chain satisfies maximality, we caan reuse it -- -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x no-extension : (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf1 ; sup = ? ; supf-mono = {!!} - ; initial = ? ; chain∋init = ? ; sup=u = ? ; supf-is-sup = ? ; csupf = {!!} - ; chain⊆A = λ lt → proj1 lt ; f-next = ? ; f-total = ? } where + no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = ? + ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf + ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where pchain0=1 : pchain ≡ pchain1 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z @@ -771,18 +792,22 @@ ... | tri< a ¬b ¬c = ⟪ subst (λ k → odef A k) su=z asu , ch-is-sup u (subst (λ k → u o< k) (sym (Oprev.oprev=x op)) a) ? (init ? ? ) ⟫ ... | tri≈ ¬a b ¬c = ? ... | tri> ¬a ¬b c = ⊥-elim ( o≤> u≤x c ) - sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf0 z) - sup {z} z≤x with trio< z px - ... | tri< a ¬b ¬c = SUP⊆ ? ( ZChain.sup zc (o<→≤ a) ) - ... | tri≈ ¬a b ¬c = record { sup = SUP.sup ? ; as = SUP.as ? ; x<sup = ? } where - zc61 : {w : HOD} → UnionCF A f mf ay supf0 z ∋ w → (w ≡ SUP.sup ?) ∨ (w < SUP.sup ? ) - zc61 {w} lt = ? -- SUP.x<sup sup1 (UnionCFR⊆ (o<→≤ z<x) z<x lt ) - ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ ) + sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) + sup {z} z≤x with trio< z px | inspect supf1 z + ... | tri< a ¬b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o<→≤ a) + ... | tri≈ ¬a b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o≤-refl0 b) + ... | tri> ¬a ¬b px<z | record { eq = eq1} = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc31 } where + zc30 : z ≡ x + zc30 with osuc-≡< z≤x + ... | case1 eq = eq + ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) + zc31 : {w : HOD} → UnionCF A f mf ay supf1 z ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) + zc31 = ? sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsSup A (UnionCF A f mf ay supf0 b) ab → supf0 b ≡ b + b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup ? } - ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o≤-refl0 b) lt) } + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup ? } ... | tri> ¬a ¬b px<b = ? where -- ⊥-elim (¬sp=x zcsup ) where zc30 : x ≡ b zc30 with osuc-≡< b≤x @@ -791,16 +816,32 @@ zcsup : ? zcsup = ? -- with zc30 -- ... | refl = case1 record { ax = ab ; is-sup = record { x<sup = λ lt → IsSup.x<sup is-sup ? } } - csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf0 b) (supf0 b) - csupf {b} b<x with trio< b px | inspect supf0 b - ... | tri< a ¬b ¬c | _ = ? -- UnionCF⊆ o≤-refl a {!!} - ... | tri≈ ¬a refl ¬c | _ = {!!} -- UnionCF⊆ o≤-refl o≤-refl ( ZChain.csupf zc o≤-refl ) - ... | tri> ¬a ¬b px<b | record { eq = eq1 } = {!!} -- UnionCF⊆ (o<→≤ px<b) o≤-refl ( ZChain.csupf zc o≤-refl ) - sis : {z : Ordinal} (z≤x : z o≤ x) → supf0 z ≡ & (SUP.sup (sup z≤x)) - sis {z} z<x with trio< z px - ... | tri< a ¬b ¬c = ZChain.supf-is-sup zc (o<→≤ a ) - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ ) + csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 (supf1 b)) (supf1 b) + csupf {b} b≤x with trio< b px | inspect supf0 b + ... | tri< a ¬b ¬c | _ = ? -- ZChain.csupf zc (o<→≤ a ) + ... | tri≈ ¬a refl ¬c | _ = ? -- ZChain.csupf zc o≤-refl + ... | tri> ¬a ¬b px<b | record { eq = eq1 } = ? where + zc30 : x ≡ b + zc30 with osuc-≡< b≤x + ... | case1 eq = sym (eq) + ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) + sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) + sis {z} z≤x = zc40 where + zc40 : supf1 z ≡ & (SUP.sup (sup z≤x)) + zc40 with trio< z px | inspect supf1 z | inspect sup z≤x + ... | tri< a ¬b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? + ... | tri≈ ¬a b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? + ... | tri> ¬a ¬b c | record { eq = eq1 } | record { eq = eq2 } = ? +-- ... | tri< a ¬b ¬c = ? -- jZChain.supf-is-sup zc (o<→≤ a ) +-- ... | tri≈ ¬a b ¬c = ? -- jZChain.supf-is-sup zc (o≤-refl0 b ) +-- ... | tri> ¬a ¬b px<z = ? +-- ... | tri< a ¬b ¬c | _ = ? -- jZChain.supf-is-sup zc (o<→≤ a ) +-- ... | tri≈ ¬a b ¬c | _ = ? -- jZChain.supf-is-sup zc (o≤-refl0 b ) +-- ... | tri> ¬a ¬b px<z | record { eq = eq1 } = ? where +-- zc30 : z ≡ x +-- zc30 with osuc-≡< z≤x +-- ... | case1 eq = eq +-- ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* x) @@ -852,6 +893,9 @@ ... | tri≈ ¬a b ¬c = ysp ... | tri> ¬a ¬b c = ysp + + -- Union of UnionCF z, z o< x undef initial-segment condition + -- this is not a ZChain because supf0 is not monotonic pchain : HOD pchain = UnionCF A f mf ay supf0 x