Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 139:53077af367e9
dead end?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2019 22:23:02 +0900 |
parents | 567084f2278f |
children | 312e27aa3cb5 |
files | HOD.agda |
diffstat | 1 files changed, 20 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Sun Jul 07 17:37:26 2019 +0900 +++ b/HOD.agda Sun Jul 07 22:23:02 2019 +0900 @@ -302,21 +302,8 @@ lemma {x} select {y} y<x = record { proj1 = proj1 select ; proj2 = y<X } where y<X : X ∋ ord→od y y<X = otrans X (proj2 select) (o<-subst y<x (sym diso) (sym diso) ) - in-codomain : {n : Level} → (X : HOD {suc n} ) → ( ψ : HOD {suc n} → HOD {suc n} ) → HOD {suc n} - in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) - ; otrans = lemma } where - lemma : {x : Ordinal} → ¬ ((y : Ordinal) → ¬ def X y ∧ (x ≡ od→ord (ψ (Ord y)))) → - {y : Ordinal} → y o< x → ¬ ((y₁ : Ordinal) → ¬ def X y₁ ∧ (y ≡ od→ord (ψ (Ord y₁)))) - lemma {x} notx {y} y<x noty = notx ( λ z prod → noty z ( record { proj1 = proj1 prod ; proj2 = {!!} } )) - Replace' : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} - Replace' X ψ = Select ( Ord (sup-o ( λ x → od→ord (ψ (ord→od x ))))) ( λ x → ¬ (∀ (y : Ordinal ) → ¬ ( def X y ∧ ( x == ψ (Ord y) )))) Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} - Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x ; - otrans = lemma } where - lemma : {x : Ordinal} → (x o< sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∧ def (in-codomain X ψ) x → - {y : Ordinal} → y o< x → (y o< sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∧ def (in-codomain X ψ) y - lemma {x} repl {y} y<x = record { proj1 = ordtrans y<x (proj1 repl) - ; proj2 = otrans (in-codomain X ψ) (proj2 repl) y<x } + Replace X ψ = Select ( Ord (sup-o ( λ x → od→ord (ψ (ord→od x ))))) ( λ x → ¬ (∀ (y : Ordinal ) → ¬ ( def X y ∧ ( x == ψ (Ord y) )))) _,_ : HOD {suc n} → HOD {suc n} → HOD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) Union : HOD {suc n} → HOD {suc n} @@ -456,27 +443,29 @@ ; proj2 = def-subst {suc n} {_} {_} {X} {od→ord y} (proj2 s ) refl diso } } where -- ψ< : {ψ : HOD {suc n} → HOD {suc n}} {x y y' : HOD {suc n}} → ψ y ∋ x → ψ y' == x -- ψ< = {!!} - replacement←' : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace' X ψ ∋ ψ x - replacement←' {ψ} X x lt = record { proj1 = {!!} - ; proj2 = def-subst {suc n} {_} {_} {Ord (sup-o (λ x₁ → od→ord (ψ (ord→od x₁))))} - { od→ord (ord→od (od→ord (ψ x)))} (sup-c< ψ {x}) refl (sym diso) + replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x + replacement← {ψ} X x lt = record { proj1 = lemma + ; proj2 = sup-o∋ψx } where - -- (y : Ordinal) → Ord (sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∋ ord→od y → - -- ¬ ((y₁ : Ordinal) → ¬ def X y₁ ∧ (ord→od y == ψ (Ord y₁))) - lemma : (y : Ordinal) → ((y₁ : Ordinal) → ¬ def X y₁ ∧ (ord→od y == ψ (Ord y₁))) → {!!} - lemma y not = {!!} - replacement→' : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace' X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x == ψ y)) - replacement→' {ψ} X x lt = contra-position lemma (proj1 lt (od→ord x) (proj2 lt)) where + sup-o∋ψx : Ord (sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∋ ord→od (od→ord (ψ x)) + sup-o∋ψx = def-subst {suc n} {_} {_} {Ord (sup-o (λ x₁ → od→ord (ψ (ord→od x₁))))} { od→ord (ord→od (od→ord (ψ x)))} + (sup-c< ψ {x}) refl (sym diso) + lemma : (y : Ordinal) → Ord (sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∋ ord→od y → + ¬ ((y₁ : Ordinal) → ¬ def X y₁ ∧ (ord→od y == ψ (Ord y₁))) + lemma y lt1 not = not (minα (od→ord x) (sup-x ( λ w → od→ord (ψ (ord→od w ))))) (record { + proj1 = ? + ; proj2 = subst₂ (λ k j → k == j ) refl oiso (o≡→== {!!}) } ) where + lemma1 : y o< osuc ( od→ord (ψ (ord→od ( sup-x ( λ w → od→ord (ψ (ord→od w ))) )))) + lemma1 = o<-subst (sup-lb lt1) diso refl + lemma2 : ord→od y ≡ ψ (ord→od ( sup-x ( λ w → od→ord (ψ (ord→od w ))))) + lemma2 with osuc-≡< lemma1 + lemma2 | case1 refl = subst (λ k → ord→od y ≡ k ) oiso refl + lemma2 | case2 t = {!!} + replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x == ψ y)) + replacement→ {ψ} X x lt = contra-position lemma (proj1 lt (od→ord x) (proj2 lt)) where lemma : ( (y : HOD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) ) lemma not y not2 = not (ord→od y) (subst₂ ( λ k j → k == j ) oiso (cong (λ k → ψ k ) Ord-ord ) (proj2 not2 )) - -- ord→od (od→ord x) == ψ (Ord y) - replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x - replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where - lemma : def (in-codomain X ψ) (od→ord (ψ x)) - lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym (trans Ord-ord oiso ))} )) - replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x == ψ y)) - replacement→ {ψ} X x lt not = ⊥-elim ( not {!!} (ord→== {!!} ) ) ∅-iso : {x : HOD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq