Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 262:53744836020b
CH trying ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2019 20:26:32 +0900 |
parents | d9d178d1457c |
children | 2e75710a936b |
files | OD.agda ordinal.agda |
diffstat | 2 files changed, 42 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Sep 17 09:29:27 2019 +0900 +++ b/OD.agda Sun Sep 22 20:26:32 2019 +0900 @@ -361,6 +361,9 @@ ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (ord→od oy) ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (ord→od oy)} induction oy +-- minimal-2 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) +-- minimal-2 x ne y = contra-position ( ε-induction (λ {z} ind → {!!} ) x ) ( λ p → {!!} ) + OD→ZF : ZF OD→ZF = record { ZFSet = OD @@ -548,6 +551,16 @@ lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) + ord⊆power : (a : Ordinal) → (x : OD) → _⊆_ (Ord (osuc a)) (Power (Ord a)) {x} + ord⊆power a x lt = power← (Ord a) x lemma where + lemma : {y : OD} → x ∋ y → Ord a ∋ y + lemma y<x with osuc-≡< lt + lemma y<x | case1 refl = c<→o< y<x + lemma y<x | case2 x<a = ordtrans (c<→o< y<x) x<a + + -- continuum-hyphotheis : (a : Ordinal) → (x : OD) → _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} + -- continuum-hyphotheis a x = ? + -- assuming axiom of choice regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimal x not) ∧ (Select (minimal x not) (λ x₁ → (minimal x not ∋ x₁) ∧ (x ∋ x₁)) == od∅)
--- a/ordinal.agda Tue Sep 17 09:29:27 2019 +0900 +++ b/ordinal.agda Sun Sep 22 20:26:32 2019 +0900 @@ -203,7 +203,6 @@ lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1 - open import Ordinals C-Ordinal : {n : Level} → Ordinals {suc n} @@ -240,4 +239,32 @@ -- open inOrdinal C-Ordinal open OD (C-Ordinal {n}) open OD.OD - + + o<→c< : {x y : Ordinal } {z : OD }→ x o< y → _⊆_ (Ord x) (Ord y) {z} + o<→c< lt lt1 = ordtrans lt1 lt + + ⊆→o< : {x y : Ordinal } → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y + ⊆→o< {x} {y} lt with trio< x y + ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc + ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc + ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) + ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) + + uncountable : (a y : Ordinal) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y) + uncountable a y = TransFinite {n} {suc n} {λ z → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od z)} caseΦ caseOSuc y where + caseΦ : (lx : Nat) → ((x : Ordinal) → x o< ordinal lx (Φ lx) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od x)) + → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od (record { lv = lx ; ord = Φ lx })) + caseΦ lx prev = {!!} + caseOSuc : (lx : Nat) (ox : OrdinalD lx) + → ((y₁ : Ordinal) → y₁ o< ordinal lx (OSuc lx ox) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y₁)) + → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od (record { lv = lx ; ord = OSuc lx ox })) + caseOSuc lx ox prev = {!!} + + continuum-hyphotheis : (a : Ordinal) → (x : OD) → _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} + continuum-hyphotheis a x lt = lemma where + lemma : Ord (osuc a) ∋ x + lemma with IsZF.power→ isZF (Ord a) x lt {{!!}} {!!} + ... | t = {!!} + + +