Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 189:540b845ea2de
Axiom of choies implies p ∨ ( ¬ p )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Jul 2019 14:42:19 +0900 |
parents | 1f2c8b094908 |
children | 6e778b0a7202 |
files | OD.agda |
diffstat | 1 files changed, 26 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Thu Jul 25 13:11:21 2019 +0900 +++ b/OD.agda Thu Jul 25 14:42:19 2019 +0900 @@ -194,19 +194,35 @@ ppp : { n : Level } → { p : Set (suc n) } { a : OD {suc n} } → record { def = λ x → p } ∋ a → p ppp {n} {p} {a} d = d -p∨¬p : { n : Level } → { p : Set (suc n) } → p ∨ ( ¬ p ) -p∨¬p {n} {p} with record { def = λ x → p } | record { def = λ x → ¬ p } -... | ps | ¬ps with is-o∅ ( od→ord ps) -p∨¬p {n} {p} | ps | ¬ps | yes eq = case2 (¬p eq) where - ¬p : {ps1 : Ordinal {suc n}} → ( ps1 ≡ o∅ {suc n} ) → p → ⊥ - ¬p refl = {!!} -p∨¬p {n} {p} | ps | ¬ps | no ¬p = case1 (ppp {n} {p} {minimul ps (λ eq → ¬p (eqo∅ eq))} ( - def-subst {suc n} {ps} {_} {record { def = λ x → p }} {od→ord (minimul ps (λ eq → ¬p (eqo∅ eq)))} lemma {!!} refl )) where +-- +-- Axiom of choice in intutionistic logic implies the exclude middle +-- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog +-- +p∨¬p : { n : Level } → ( p : Set (suc n) ) → p ∨ ( ¬ p ) +p∨¬p {n} p with is-o∅ ( od→ord ( record { def = λ x → p } )) +p∨¬p {n} p | yes eq = case2 (¬p eq) where + ps = record { def = λ x → p } + lemma : ps == od∅ → p → ⊥ + lemma eq p0 = ¬x<0 {n} {od→ord ps} (eq→ eq p0 ) + ¬p : (od→ord ps ≡ o∅) → p → ⊥ + ¬p eq = lemma ( subst₂ (λ j k → j == k ) oiso o∅≡od∅ ( o≡→== eq )) +p∨¬p {n} p | no ¬p = case1 (ppp {n} {p} {minimul ps (λ eq → ¬p (eqo∅ eq))} lemma) where + ps = record { def = λ x → p } eqo∅ : ps == od∅ {suc n} → od→ord ps ≡ o∅ {suc n} eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) lemma : ps ∋ minimul ps (λ eq → ¬p (eqo∅ eq)) lemma = x∋minimul ps (λ eq → ¬p (eqo∅ eq)) +∋-p : { n : Level } → ( p : Set (suc n) ) → Dec p +∋-p {n} p with p∨¬p p +∋-p {n} p | case1 x = yes x +∋-p {n} p | case2 x = no x + +double-neg-eilm : {n : Level } {A : Set (suc n)} → ¬ ¬ A → A -- we don't have this in intutionistic logic +double-neg-eilm {n} {A} notnot with ∋-p A +... | yes p = p +... | no ¬p = ⊥-elim ( notnot ¬p ) + OrdP : {n : Level} → ( x : Ordinal {suc n} ) ( y : OD {suc n} ) → Dec ( Ord x ∋ y ) OrdP {n} x y with trio< x (od→ord y) OrdP {n} x y | tri< a ¬b ¬c = no ¬c @@ -386,7 +402,6 @@ lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) lemma = sup-o< - -- double-neg-eilm : {n : Level } {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic -- -- Every set in OD is a subset of Ordinals -- @@ -474,8 +489,8 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not - -- choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD {suc n} - + -- choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → OD {suc n} + -- -- another form of regularity -- ε-induction : {n m : Level} { ψ : OD {suc n} → Set m}