Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 986:557f8145d3c1
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 12 Nov 2022 18:11:14 +0900 |
parents | 0d8dafbecb0d |
children | c8c60a05b39b |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Nov 12 01:49:25 2022 +0900 +++ b/src/zorn.agda Sat Nov 12 18:11:14 2022 +0900 @@ -666,7 +666,7 @@ s<z : s o< & A s<z = ordtrans s<b b<z zc04 : odef (UnionCF A f mf ay supf (& A)) (supf s) - zc04 = ZChain.csupf zc ? -- (z09 (ZChain.asupf zc)) + zc04 = ZChain.csupf zc (ordtrans<-≤ ss<sb (ZChain.supf-mono zc (o<→≤ b<z))) zc05 : odef (UnionCF A f mf ay supf b) (supf s) zc05 with zc04 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ @@ -1027,7 +1027,7 @@ odef (UnionCF A f mf ay supf1 z) x → (x ≡ sup2) ∨ (x << sup2)) → MinSUP.sup m o≤ sup2 ms01 {sup2} us P = MinSUP.minsup m ? ? - csupf0 : {z1 : Ordinal } → supf1 z1 o< px → z1 o≤ px → odef (UnionCF A f mf ay supf1 x) (supf1 z1) + csupf0 : {z1 : Ordinal } → supf1 z1 o< supf1 px → z1 o≤ px → odef (UnionCF A f mf ay supf1 x) (supf1 z1) csupf0 {z1} s0z<px z≤px = subst (λ k → odef (UnionCF A f mf ay supf1 x) k ) (sym (sf1=sf0 z≤px)) ( UChain⊆ A f mf {x} {y} ay {supf0} {supf1} (ZChain.supf-mono zc) sf=eq sf≤ (chain-mono f mf ay supf0 (ZChain.supf-mono zc) (o<→≤ px<x) @@ -1035,7 +1035,13 @@ -- px o< z1 , px o≤ supf1 z1 --> px o≤ sp1 o< x -- sp1 ≡ px--> odef (UnionCF A f mf ay supf1 x) sp1 csupf1 : {z1 : Ordinal } → supf1 z1 o< supf1 x → odef (UnionCF A f mf ay supf1 x) (supf1 z1) - csupf1 {z1} sz<sx = ⟪ ? , ch-is-sup (supf1 z1) ? ? (init ? ? ) ⟫ + csupf1 {z1} sz<sx = ⟪ asupf1 , ch-is-sup (supf1 z1) (subst (λ k → k o< supf1 x) (sym cs00) sz<sx) cp (init asupf1 cs00 ) ⟫ where + z<x : z1 o< x + z<x = supf-inject0 supf1-mono sz<sx + cs00 : supf1 (supf1 z1) ≡ supf1 z1 + cs00 = ? + cp : ChainP A f mf ay supf1 (supf1 z1) + cp = ? zc41 | (case1 x<sp ) = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ? @@ -1417,35 +1423,23 @@ sc<<d : {mc : Ordinal } → (asc : odef A (supf mc)) → (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) → supf mc << MinSUP.sup spd - sc<<d {mc} asc spd = z25 where - d1 : Ordinal - d1 = MinSUP.sup spd -- supf d1 ≡ d - z24 : (supf mc ≡ d1) ∨ ( supf mc << d1 ) - z24 = MinSUP.x≤sup spd (init asc refl) - -- - -- f ( f .. ( supf mc ) <= d1 - -- f d1 <= d1 - -- - z25 : supf mc << d1 - z25 with z24 - ... | case2 lt = lt - ... | case1 eq = ⊥-elim ( <-irr z29 (proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) ) ) where - -- supf mc ≡ d1 - z32 : ((cf nmx (supf mc)) ≡ d1) ∨ ( (cf nmx (supf mc)) << d1 ) - z32 = MinSUP.x≤sup spd (fsuc _ (init asc refl)) - z29 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z29 with z32 - ... | case1 eq1 = case1 (cong (*) (trans (cong (cf nmx) (sym eq)) eq1) ) - ... | case2 lt = case2 (subst (λ k → * k < * d1 ) (cong (cf nmx) eq) lt) - - z11 : odef (ZChain.chain zc) d - z11 = ZChain1.is-max (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) {& s} ? ? ? ? ? where - - z10 : supf d o≤ supf (& A) - z10 = ? + sc<<d {mc} asc spd with MinSUP.x≤sup spd (init asc refl) + ... | case1 eq = ? + ... | case2 lt = ? ss<sa : supf c o< supf (& A) - ss<sa = ? + ss<sa with osuc-≡< ( ZChain.supf-mono zc (o<→≤ c<A)) + ... | case2 sc<sa = sc<sa + ... | case1 sc=sa = ⊥-elim ( nmx record { maximal = * d ; as = subst (λ k → odef A k) (sym &iso) (MinSUP.asm spd) + ; ¬maximal<x = λ {x} ax → subst₂ (λ j k → ¬ ( j < k)) refl *iso (zc10 sc=sa ax) } ) where + zc10 : supf c ≡ supf (& A) → {x : Ordinal } → odef A x → ¬ ( d << x ) + zc10 = ? -- supf x o≤ supf c → supf x ≡ supf c ∨ supf x o< supf c + -- c << x → x is sup of chain or x = f ( .. ( f c )) + -- c << x → x is not in chain + -- supf c o≤ x (minimulity) + -- odef chain z → supf z o< supf (& A) ≡ supf c → minimulity c o≤ supf c + -- supf c o≤ supf (supf c) o≤ supf x o≤ supf (& A) + -- supf c ≡ supf (supf c) ≡ supf x ≡ supf (& A) means supf of FClosure of (supf c) is Maximal zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM