Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 553:567a1a9f3e0a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 28 Apr 2022 19:00:40 +0900 |
parents | fb210e812eba |
children | 0687736285ce |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Apr 28 18:33:10 2022 +0900 +++ b/src/zorn.agda Thu Apr 28 19:00:40 2022 +0900 @@ -216,11 +216,6 @@ -- ∨ (supO (& (ZChain.chain zc0)) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc0)) (subst IsTotalOrderSet (sym *iso) (ZChain.f-total zc0)) ≡ x) -- ∨ ( ( z : Ordinal) → odef (ZChain.chain zc0) z → ¬ ( * z < * x )) -- 3cases {x} {y} f mf ax ay zc0 = {!!} - -- Union of ZFChain - UZFChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (B : Ordinal) - → ( (z : Ordinal) → z o< B → {y : Ordinal} → (ya : odef A y) → ZChain A ya f mf supO z ) → HOD - UZFChain f mf B prev = record { od = record { def = λ y → odef A y ∧ (y o< B) ∧ ( (y<b : y o< B) → (ya : odef A y) → odef (ZChain.chain (prev y y<b ya )) y) } - ; odmax = & A ; <odmax = z07 } -- create all ZChains under o< x ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((z : Ordinal) → z o< x → {y : Ordinal} → (ya : odef A y) → ZChain A ya f mf supO z ) → { y : Ordinal } → (ya : odef A y) → ZChain A ya f mf supO x @@ -272,13 +267,18 @@ * a < * b → odef (ZChain.chain zc0) b z18 {a} {b} za b<x ba (case1 p) a<b = {!!} z18 {a} {b} za b<x ba (case2 p) a<b = {!!} - ... | no ¬ox with trio< (& A) x --- limit ordinal case - ... | tri< a ¬b ¬c = {!!} where - zc0 = prev (& A) a - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b c = {!!} where + ... | no ¬ox = {!!} where --- limit ordinal case + -- Union of ZFChain + record UZFChain (y : Ordinal) : Set n where + field + u : Ordinal + u<x : u o< x + zuy : odef (ZChain.chain (prev u u<x ay )) y uzc : HOD - uzc = UZFChain f mf x prev + uzc = record { od = record { def = λ y → UZFChain y } ; odmax = & A ; <odmax = {!!} } + u-total : IsTotalOrderSet uzc + u-total {x} {y} ux uy = {!!} + zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where