Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 848:56a150965988
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 04 Sep 2022 08:50:53 +0900 |
parents | bf1b6c4768d2 |
children | f1f779930fbf |
files | src/zorn.agda |
diffstat | 1 files changed, 22 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Sep 03 13:28:10 2022 +0900 +++ b/src/zorn.agda Sun Sep 04 08:50:53 2022 +0900 @@ -973,29 +973,40 @@ csupf1 with csupf0 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ ... | ⟪ as , ch-is-sup u u≤x record { fcy<sup = fcy<sup ; order = order ; supu=u = supu=u } fc ⟫ - = ⟪ as , ch-is-sup u u≤x record { fcy<sup = fcy<sup1 ; order = order1 ; supu=u = supu=u1 } ? ⟫ where - zc13 : supf0 u o< supf0 b - zc13 = ? - zc12 : odef (UnionCF A f mf ay supf0 b) (supf1 b) - zc12 = subst (λ k → odef (UnionCF A f mf ay supf0 b) k) &iso ( ZChain.csupf-fc zc b≤px zc13 fc ) - u≤x1 : u o≤ supf1 b - u≤x1 = u≤x - supu=u0 : supf0 u ≡ u - supu=u0 = supu=u + with osuc-≡< (subst₂ (λ j k → j o≤ k ) (sym supu=u ) (sym (supf0=1 b≤px)) u≤x) + ... | case1 eq = ⟪ as , ch-is-sup u u≤x record { fcy<sup = fcy<sup1 ; order = order1 ; supu=u = supu=u1 } fc1 ⟫ + where + s0b=s0u : supf0 u ≡ supf0 b -- u ≡ supf0 b + s0b=s0u = eq + u≤sb : u o≤ supf1 b + u≤sb = u≤x supu=u1 : supf1 u ≡ u supu=u1 with trio< u px ... | tri< a ¬b ¬c = supu=u ... | tri≈ ¬a b ¬c = supu=u ... | tri> ¬a ¬b c = ? -- supf1 b ≡ sp1 , u o≤ sp1, x o≤ u o≤ supf1 b -- u ≡ x → xsup x → ⊥ - -- u > x → supf1 u ≡ sp1 → supf1 b o≤ supf1 u - -- px o< u o≤ sp1 , spuf1 u o≤ spuf1 sp1 + fc0 : FClosure A f (supf0 u) (supf1 b) + fc0 = fc + fc1 : FClosure A f (supf1 u) (supf1 b) + fc1 = ? + -- u > x → supf1 u ≡ sp1 → supf1 b o≤ supf1 u + -- px o< u o≤ sp1 , spuf1 u o≤ spuf1 sp1 fcy<sup1 : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u) ∨ (z << supf1 u) fcy<sup1 = ? order1 : {s z1 : Ordinal} → supf1 s o< supf1 u → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 u) ∨ (z1 << supf1 u) order1 = ? + ... | case2 lt = chain-mono f mf ay supf1 b≤sb (UnionCF0⊆1 b≤px zc12 ) where + b≤sb : b o≤ supf1 b -- ≡ supf0 b + b≤sb = ? + lt1 : supf0 u o< supf0 b + lt1 = lt + zc12 : odef (UnionCF A f mf ay supf0 b) (supf1 b) + zc12 = subst (λ k → odef (UnionCF A f mf ay supf0 b) k) &iso ( ZChain.csupf-fc zc b≤px lt fc ) ... | case1 refl = ⟪ supf∈A o≤-refl , ch-is-sup (supf1 x) o≤-refl record { fcy<sup = fcy<sup ; order = order ; supu=u = zc11 } (init zc10 zc11 ) ⟫ where + zc12 : supf1 x ≡ sp1 + zc12 = ? zc11 : supf1 (supf1 x) ≡ supf1 x zc11 = ? zc10 : odef A (supf1 (supf1 x))