Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1350:575777026a72
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jun 2023 11:37:00 +0900 |
parents | f5048a51d19f |
children | 4c9ec06aafeb |
files | src/bijection.agda |
diffstat | 1 files changed, 25 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Sun Jun 18 06:00:57 2023 +0900 +++ b/src/bijection.agda Sun Jun 18 11:37:00 2023 +0900 @@ -899,12 +899,31 @@ ... | yes isa | tri≈ ¬a b ¬c = ≤-refl ... | yes isa | tri> ¬a ¬b c₁ = a≤sa c1<count-A (suc n) zero with is-A (fun← cn zero) | <-cmp (fun→ cn (g (f (fun← an (suc n))))) zero - ... | no nisa | s = ? - ... | yes isa | tri≈ ¬a b ¬c = ? where - -- only one a in c1 n loop - lem00 : c1 n zero ≤ count-A zero - lem00 = c1<count-A n zero - ... | yes isa | tri> ¬a ¬b c₁ = ? + ... | no nisa | tri≈ ¬a b ¬c = ⊥-elim ( nisa record { a = fun← an (suc n) ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) b ) } ) + ... | no nisa | tri> ¬a ¬b c₁ = lem01 n ≤-refl where + lem01 : (i : ℕ) → i ≤ n → c1 i 0 ≤ 0 + lem01 0 i≤n with <-cmp (fun→ cn (g (f (fun← an 0)))) zero + ... | tri> ¬a ¬b c₁ = ≤-refl + ... | tri≈ ¬a bi ¬c = ⊥-elim ( nisa record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) bi) } ) + lem01 (suc i) i≤n with <-cmp (fun→ cn (g (f (fun← an (suc i))))) zero + ... | tri≈ ¬a bi ¬c = ⊥-elim ( nisa record { a = fun← an (suc i) ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) bi) } ) + lem01 (suc i) (s≤s i≤n) | tri> ¬a ¬b c₁ = lem01 i (≤-trans i≤n a≤sa) + ... | yes isa | tri≈ ¬a b ¬c = lem01 n ≤-refl where + lem01 : (i : ℕ) → i ≤ n → suc (c1 i 0) ≤ 1 + lem01 0 i≤n with <-cmp (fun→ cn (g (f (fun← an 0)))) zero + ... | tri> ¬a ¬b c₁ = ≤-refl + ... | tri≈ ¬a bi ¬c = ⊥-elim (nat-≡< (inject-cgf (trans bi (sym b)) ) (<-transʳ i≤n a<sa )) + lem01 (suc i) i≤n with <-cmp (fun→ cn (g (f (fun← an (suc i))))) zero + ... | tri≈ ¬a bi ¬c = ⊥-elim (nat-≡< (inject-cgf (trans bi (sym b)) ) (<-transʳ i≤n a<sa )) + lem01 (suc i) (s≤s i≤n) | tri> ¬a ¬b c₁ = lem01 i (≤-trans i≤n a≤sa) + ... | yes isa | tri> ¬a ¬b c₁ = lem01 n ≤-refl where + lem01 : (i : ℕ) → i ≤ n → c1 i 0 ≤ 1 + lem01 0 i≤n with <-cmp (fun→ cn (g (f (fun← an 0)))) zero + ... | tri> ¬a ¬b c₁ = a≤sa + ... | tri≈ ¬a bi ¬c = ≤-refl + lem01 (suc i) i≤n with <-cmp (fun→ cn (g (f (fun← an (suc i))))) zero + ... | tri≈ ¬a bi ¬c = ? + lem01 (suc i) (s≤s i≤n) | tri> ¬a ¬b c₁ = lem01 i (≤-trans i≤n a≤sa) c1<count-A zero (suc i) = ? c1<count-A (suc n) (suc i) with is-A (fun← cn zero) | <-cmp (fun→ cn (g (f (fun← an (suc n))))) zero ... | no nisa | t = ?