Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 222:59771eb07df0
TransFinite induction fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 16:54:30 +0900 |
parents | 1709c80b7275 |
children | 2e1f19c949dc |
files | Ordinals.agda ordinal.agda |
diffstat | 2 files changed, 55 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/Ordinals.agda Thu Aug 08 17:32:21 2019 +0900 +++ b/Ordinals.agda Fri Aug 09 16:54:30 2019 +0900 @@ -13,17 +13,19 @@ open import Relation.Binary open import Relation.Binary.Core - - -record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set n where +record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set (suc (suc n)) where field Otrans : {x y z : ord } → x o< y → y o< z → x o< z OTri : Trichotomous {n} _≡_ _o<_ ¬x<0 : { x : ord } → ¬ ( x o< o∅ ) <-osuc : { x : ord } → x o< osuc x osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) + TransFinite : { ψ : ord → Set (suc n) } + → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) + → ∀ (x : ord) → ψ x -record Ordinals {n : Level} : Set (suc n) where + +record Ordinals {n : Level} : Set (suc (suc n)) where field ord : Set n o∅ : ord
--- a/ordinal.agda Thu Aug 08 17:32:21 2019 +0900 +++ b/ordinal.agda Fri Aug 09 16:54:30 2019 +0900 @@ -303,10 +303,10 @@ TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m } → ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) - → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) + → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x) → ψ y ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) → ∀ (x : Ordinal) → ψ x TransFinite {n} {m} {ψ} caseΦ caseOSuc x = proj1 (TransFinite1 (lv x) (ord x) ) where - TransFinite1 : (lx : Nat) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x ) ) + TransFinite1 : (lx : Nat) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx ox → ψ x ) ) TransFinite1 Zero (Φ 0) = record { proj1 = caseΦ Zero lemma ; proj2 = lemma1 } where lemma : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x lemma x (case1 ()) @@ -320,10 +320,24 @@ lemma : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy o< ordinal (Suc lx) (Φ (Suc lx)) → ψ (ordinal ly oy) lemma lx1 ox1 (case1 lt) with <-∨ lt lemma lx (Φ lx) (case1 lt) | case1 refl = proj1 ( TransFinite1 lx (Φ lx) ) - lemma lx (Φ lx) (case1 lt) | case2 (s≤s lt1) = lemma0 lx (Φ lx) (case1 (s≤s lt1)) - lemma lx (OSuc lx ox1) (case1 lt) | case1 refl = caseOSuc lx ox1 ( lemma lx ox1 (case1 a<sa)) - lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 ( lemma lx1 ox1 (case1 (<-trans lt1 a<sa ))) - TransFinite1 lx (OSuc lx ox) = record { proj1 = caseOSuc lx ox (proj1 (TransFinite1 lx ox )) ; proj2 = proj2 (TransFinite1 lx ox )} + lemma lx (Φ lx) (case1 lt) | case2 lt1 = lemma0 lx (Φ lx) (case1 lt1) + lemma lx (OSuc lx ox1) (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where + lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx ox1) → ψ y + lemma2 y lt1 with osuc-≡< lt1 + lemma2 y lt1 | case1 refl = lemma lx ox1 (case1 a<sa) + lemma2 y lt1 | case2 t = proj2 (TransFinite1 lx ox1) y t + lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where + lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx1) ∨ (ord y d< OSuc lx1 ox1) → ψ y + lemma2 y lt2 with osuc-≡< lt2 + lemma2 y lt2 | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt)) + lemma2 y lt2 | case2 (case1 lt3) = proj2 (TransFinite1 lx (Φ lx)) y (case1 (<-trans lt3 lt1 )) + lemma2 y lt2 | case2 (case2 lt3) with d<→lv lt3 + ... | refl = proj2 (TransFinite1 lx (Φ lx)) y (case1 lt1) + TransFinite1 lx (OSuc lx ox) = record { proj1 = caseOSuc lx ox lemma ; proj2 = lemma } where + lemma : (y : Ordinal) → y o< ordinal lx (OSuc lx ox) → ψ y + lemma y lt with osuc-≡< lt + lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) + lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1 -- we cannot prove this in intutionistic logic -- (¬ (∀ y → ¬ ( ψ y ))) → (ψ y → p ) → p @@ -341,3 +355,32 @@ → ¬ p TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) +open import Ordinals + +C-Ordinal : {n : Level } → Ordinals {suc n} +C-Ordinal {n} = record { + ord = Ordinal {suc n} + ; o∅ = o∅ + ; osuc = osuc + ; _o<_ = _o<_ + ; isOrdinal = record { + Otrans = ordtrans + ; OTri = trio< + ; ¬x<0 = ¬x<0 + ; <-osuc = <-osuc + ; osuc-≡< = osuc-≡< + ; TransFinite = TransFinite1 + } + } where + ord1 : Set (suc n) + ord1 = Ordinal {suc n} + TransFinite1 : { ψ : ord1 → Set (suc (suc n)) } + → ( (x : ord1) → ( (y : ord1 ) → y o< x → ψ y ) → ψ x ) + → ∀ (x : ord1) → ψ x + TransFinite1 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where + caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) → + ψ (record { lv = lx ; ord = Φ lx }) + caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev + caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) → + ψ (record { lv = lx ; ord = OSuc lx x₁ }) + caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev