Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1236:59e927672b80
Tyconoff done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 09 Mar 2023 02:57:16 +0900 |
parents | d2506e861dbf |
children | 54a63423f128 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 38 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Thu Mar 09 02:31:41 2023 +0900 +++ b/src/Tychonoff.agda Thu Mar 09 02:57:16 2023 +0900 @@ -681,7 +681,44 @@ -- FQSet is in Projection ⁻¹ F FQSet⊆F : {x : Ordinal } → odef FQSet x → odef (filter F) (& (ZFP P (* x) )) - FQSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = ? + FQSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ty80 (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where + Rx : HOD + Rx = Replace' (* z) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) + PxRx∋z : * z ⊆ ZFP P Rx + PxRx∋z {w} zw = subst (λ k → ZFProduct P Rx k ) ty70 ( ab-pair (zp1 b) record { z = w ; az = zw ; x=ψz = refl } ) where + a = F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw) + b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw ) + ty73 : & (* (zπ2 a)) ≡ zπ2 b + ty73 = begin + & (* (zπ2 a)) ≡⟨ &iso ⟩ + zπ2 a ≡⟨ cong zπ2 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b)) ⟩ + zπ2 b ∎ where open ≡-Reasoning + ty70 : & < * (zπ1 b) , * (& (* (zπ2 a))) > ≡ w + ty70 with zp-iso (subst (λ k → odef (ZFP P Q) k) (sym &iso) (f⊆L F az _ zw )) + ... | eq = trans (cong₂ (λ j k → & < j , * k > ) refl ty73 ) (trans eq &iso ) + ty71 : * z ⊆ ZFP P (* x) + ty71 = subst (λ k → * z ⊆ ZFP P k ) ty72 PxRx∋z where + ty72 : Rx ≡ * x + ty72 = begin + Rx ≡⟨ sym *iso ⟩ + * (& Rx) ≡⟨ cong (*) (sym x=ψz ) ⟩ + * x ∎ where open ≡-Reasoning + ty80 : Power (ZFP P Q) ∋ ZFP P (* x) + ty80 y yx = isQ→PxQ ty81 (subst (λ k → odef k y ) *iso yx ) where + ty81 : * x ⊆ Q + ty81 {w} xw with subst (λ k → odef k w) (trans (cong (*) x=ψz ) *iso ) xw + ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef Q k) (sym ty84) ty87 where + a = f⊆L F (subst (odef (filter F)) (sym &iso) az) (& (* z1)) + (subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) az1)) + b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) (f⊆L F az _ az1 ) + ty87 : odef Q (zπ2 b) + ty87 = zp2 b + ty84 : w ≡ (zπ2 b) + ty84 = begin + w ≡⟨ trans x=ψz1 &iso ⟩ + zπ2 a ≡⟨ cong zπ2 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b )) ⟩ + zπ2 b ∎ where open ≡-Reasoning + uflq : UFLP TQ FQ UFQ uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ