Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 499:5b1cfaf4c4ff
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 12 Apr 2022 14:10:44 +0900 |
parents | 8ec0b88b022f |
children | a97a1f1e27fa |
files | src/zorn.agda |
diffstat | 1 files changed, 19 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Apr 12 10:22:15 2022 +0900 +++ b/src/zorn.agda Tue Apr 12 14:10:44 2022 +0900 @@ -131,16 +131,30 @@ -- finite IChain -record InFiniteIChain {A : HOD} (x : Element A) : Set (suc n) where +record InFiniteIChain {A : HOD} (x : Element A) (z : Ordinal) : Set (suc n) where field - y : Element A - y>x : IChainSet x ∋ elm y → elm x < elm y + ny : (y : Element A ) → & (elm y) o< z → Element A + y>x : {y : Element A} → (lt : & (elm y) o< z )→ IChainSet x ∋ elm y → elm y < elm (ny y lt ) Zorn-lemma-case : { A : HOD } → o∅ o< & A → IsPartialOrderSet A - → (x : Element A) → Sup> x ∨ Dec ( InFiniteIChain x ) -Zorn-lemma-case {A} 0<A PO x = {!!} + → (x : Element A) → Sup> x ∨ Dec ( InFiniteIChain x (& A)) +Zorn-lemma-case {A} 0<A PO x = zc2 where + Gtx : HOD + Gtx = record { od = record { def = λ y → odef ( IChainSet x ) y ∧ ( & (elm x) o< y ) } ; odmax = & A + ; <odmax = λ lt → subst (λ k → k o< & A) &iso (c<→o< (subst (λ k → odef A k) (sym &iso) (proj1 (proj1 lt)))) } + zc2 : Sup> x ∨ Dec (InFiniteIChain x (& A)) + zc2 with is-o∅ (& Gtx) + ... | no not = case1 record { y = record { elm = ODC.minimal O Gtx (λ eq → not (=od∅→≡o∅ eq) ); is-elm = {!!} } ; y>x = {!!} } + ... | yes nogt = case2 {!!} where + zc3 : {y : Element A} → IChainSet x ∋ elm y → ¬ (& (elm x) o< & (elm y)) + zc3 = {!!} + zcind : (z : Ordinal ) → ((y : Ordinal) → y o< z → Dec (InFiniteIChain x y ) ) → Dec (InFiniteIChain x z) + zcind z prev = {!!} + zc4 : Dec (InFiniteIChain x (& A)) + zc4 = TransFinite zcind (& A) + Zorn-lemma : { A : HOD } → o∅ o< & A