Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1004:5c62c97adac9
first cfcs done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Nov 2022 19:37:18 +0900 |
parents | b9dfe9bc8412 |
children | 2808471040c0 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 18 18:14:41 2022 +0900 +++ b/src/zorn.agda Fri Nov 18 19:37:18 2022 +0900 @@ -1082,10 +1082,10 @@ z53 = A∋fc {A} _ f mf fc csupf1 : odef (UnionCF A f mf ay supf1 b) w csupf1 with trio< (supf0 px) x - ... | tri< sfpx<x ¬b ¬c = ⟪ z53 , ch-is-sup spx ? cp1 fc1 ⟫ where + ... | tri< sfpx<x ¬b ¬c = ⟪ z53 , ch-is-sup spx (subst (λ k → spx o< k) (sym b=x) sfpx<x) cp1 fc1 ⟫ where spx = supf0 px - fc1 : FClosure A f (supf1 spx) w - fc1 = subst (λ k → FClosure A f k w ) (trans (cong supf0 a=px) ? ) fc + spx≤px : supf0 px o≤ px + spx≤px = zc-b<x _ sfpx<x z54 : {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (supf0 px)) z → (z ≡ supf0 px) ∨ (z << supf0 px) z54 {z} ⟪ az , ch-init fc ⟫ = ZChain.fcy<sup zc o≤-refl fc z54 {z} ⟪ az , ch-is-sup u u<b is-sup fc ⟫ = subst (λ k → (z ≡ k) ∨ (z << k )) @@ -1099,16 +1099,18 @@ z52 : supf1 (supf0 px) ≡ supf0 px z52 = trans (sf1=sf0 (zc-b<x _ sfpx<x)) ( ZChain.sup=u zc (ZChain.asupf zc) (zc-b<x _ sfpx<x) ⟪ record { x≤sup = z54 } , ZChain.IsMinSUP→NotHasPrev zc (ZChain.asupf zc) z54 (( λ ax → proj1 (mf< _ ax))) ⟫ ) + fc1 : FClosure A f (supf1 spx) w + fc1 = subst (λ k → FClosure A f k w ) (trans (cong supf0 a=px) (sym z52) ) fc order : {s z1 : Ordinal} → supf1 s o< supf1 spx → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 spx) ∨ (z1 << supf1 spx) order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) - (trans (sym (ZChain.supf-is-minsup zc ? )) (sym ? ) ) - (MinSUP.x≤sup (ZChain.minsup zc ?) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) - ? (fcup fcs ? ) )) + (trans (sym (ZChain.supf-is-minsup zc spx≤px )) (sym (sf1=sf0 spx≤px) ) ) + (MinSUP.x≤sup (ZChain.minsup zc spx≤px) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) + spx≤px (fcup fcs (ordtrans (supf-inject0 supf1-mono ss<spx) spx≤px ) ))) cp1 : ChainP A f mf ay supf1 spx - cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 ? )) - ( ZChain.fcy<sup zc ? fc ) + cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ (z << k )) (sym (sf1=sf0 spx≤px )) + ( ZChain.fcy<sup zc spx≤px fc ) ; order = order - ; supu=u = ? } + ; supu=u = z52 } ... | tri≈ ¬a spx=x ¬c = ⊥-elim (<-irr (case1 (cong (*) m10)) (proj1 (mf< (supf0 px) (ZChain.asupf zc)))) where -- supf px ≡ x then the chain is stopped, which cannot happen when <-monotonic case m12 : supf0 px ≡ sp1