Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 131:5dcd5a3583a0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Jul 2019 00:25:58 +0900 |
parents | 3849614bef18 |
children | 327d49c2478b |
files | ordinal-definable.agda |
diffstat | 1 files changed, 21 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Tue Jul 02 15:59:07 2019 +0900 +++ b/ordinal-definable.agda Wed Jul 03 00:25:58 2019 +0900 @@ -307,12 +307,14 @@ ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) ; isZF = isZF } where - Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} - Replace X ψ = record { def = λ x → ( X ∋ ord→od x ) ∧ (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) } Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ((y : Ordinal {suc n}) → def X y → ψ ( ord→od y )) ∧ def X x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = record { def = λ z → z o< (omax (od→ord x) (od→ord y)) } + _∩_ : ( A B : OD ) → OD + A ∩ B = record { def = λ x → def A x ∧ def B x } + Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} + Replace X ψ = record { def = λ x → x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x )))) } Union : OD {suc n} → OD {suc n} Union U = record { def = λ y → osuc y o< (od→ord U) } -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) @@ -323,8 +325,6 @@ A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x - -- _∩_ : ( A B : ZFSet ) → ZFSet - -- A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) -- _∪_ : ( A B : ZFSet ) → ZFSet -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) infixr 200 _∈_ @@ -346,10 +346,10 @@ ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {ψ} {X} {y} - ; repl-x = λ {ψ} {X} {x} lt → Ord (sup-x (λ x → od→ord (ψ (ord→od x)))) - ; repl-x-∈ = λ {ψ} {X} {x} lt → {!!} - ; replacement← = {!!} - ; replacement→ = {!!} + ; repl-x = repl-x + ; repl-x-∈ = repl-x-∈ + ; replacement← = replacement← + ; replacement→ = replacement→ } where pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) @@ -414,8 +414,19 @@ } where lemma : (cond : ((y : OD) → X ∋ y → ψ y ) ∧ (X ∋ y) ) → ψ y lemma cond = (proj1 cond) y (proj2 cond) - replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x - replacement {ψ} X x = {!!} -- sup-c< ψ {x} + repl-x : {ψ : OD → OD} {X x : OD} → (lt : Replace X ψ ∋ x) → OD + repl-x {ψ} {X} {x} lt = Ord (sup-x (λ x → od→ord (ψ (ord→od x)))) + repl-x-∈ : {ψ : OD → OD} {X x : OD} → (lt : Replace X ψ ∋ x) → X ∋ repl-x {ψ} {X} {x} lt + repl-x-∈ {ψ} {X} {x} lt = {!!} + X∩x : {X x : OD} → X ∋ x → X ∩ x ≡ x + X∩x = {!!} + replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x + replacement← {ψ} X x lt = def-subst ( sup-c< ψ {x} ) (sym lemma) refl where + lemma : record { def = λ x → x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x )))) } ≡ + record { def = λ x → x o< sup-o ( λ x → od→ord (ψ (ord→od x ))) } + lemma = {!!} + replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → x == ψ (repl-x {ψ} {X} {x} lt) + replacement→ {ψ} X x = {!!} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n}