Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1241:5f1572d1f19a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Mar 2023 01:30:55 +0900 |
parents | fbe072447243 |
children | e843ace90b31 |
files | src/BAlgebra.agda src/generic-filter.agda |
diffstat | 2 files changed, 21 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgebra.agda Sun Mar 12 13:02:09 2023 +0900 +++ b/src/BAlgebra.agda Mon Mar 13 01:30:55 2023 +0900 @@ -63,6 +63,12 @@ ... | yes y = case1 ( subst (λ k → odef X k ) &iso y ) ... | no n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso n ⟫ +\-⊆ : { P A B : HOD } → A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B ) +\-⊆ {P} {A} {B} A⊆P = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx , (λ ax → proj2 pbx (a<b ax)) ⟫ ) , lem07 ⟫ where + lem07 : (P \ B) ⊆ (P \ A) → A ⊆ B + lem07 pba {x} ax with ODC.p∨¬p O (odef B x) + ... | case1 bx = bx + ... | case2 ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆P ax , ¬bx ⟫ ) ax ) [a-b]∩b=0 : { A B : HOD } → (A \ B) ∩ B ≡ od∅ [a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
--- a/src/generic-filter.agda Sun Mar 12 13:02:09 2023 +0900 +++ b/src/generic-filter.agda Mon Mar 13 01:30:55 2023 +0900 @@ -159,17 +159,24 @@ rgen : HOD rgen = Replace (Filter.filter genf) (λ x → P \ x ) -P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C ) -P-GenericFilter P L p0 L⊆PP Lp0 C = record { - genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x) ; f⊆L = ? ; filter1 = ? ; filter2 = ? } +-- \-⊆ + +P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) + → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C ) +P-GenericFilter P L p0 L⊆PP Lp0 NEG C = record { + genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x) ; f⊆L = gf01 ; filter1 = ? ; filter2 = ? } ; generic = λ D cd → subst (λ k → ¬ (Dense.dense D ∩ k) ≡ od∅ ) (sym gf00) (fdense D cd ) } where + GP = Replace (PDHOD L p0 C) (λ x → P \ x) f⊆PL : PDHOD L p0 C ⊆ L f⊆PL lt = x∈PP lt + gf01 : Replace (PDHOD L p0 C) (λ x → P \ x) ⊆ L + gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) ) f1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → p ⊆ q → PDHOD L p0 C ∋ q f1 {p} {q} L∋q PD∋p p⊆q = ? - f2 : {p q : HOD} → ? ∋ p → ? ∋ q → L ∋ (p ∩ q) → ? ∋ (p ∩ q) - f2 {p} {q} PD∋p PD∋q L∋pq with <-cmp (gr PD∋q) (gr PD∋p) + f2 : {p q : HOD} → GP ∋ p → GP ∋ q → L ∋ (p ∩ q) → GP ∋ (p ∩ q) + f2 {p} {q} record { z = xp ; az = Pp ; x=ψz = peq } + record { z = xq ; az = Pq ; x=ψz = qeq } L∋pq with <-cmp (gr Pp) (gr Pq) ... | tri< a ¬b ¬c = ? ... | tri≈ ¬a eq ¬c = ? ... | tri> ¬a ¬b c = ? @@ -189,10 +196,10 @@ b<a : b ⊆ a lemma232 : (P L p : HOD ) (C : CountableModel ) - → (LP : L ⊆ Power P ) → (Lp0 : L ∋ p ) + → (LP : L ⊆ Power P ) → (Lp0 : L ∋ p ) ( NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → ( {q : HOD} → (Lq : L ∋ q ) → NonAtomic L q Lq ) - → ¬ ( (ctl-M C) ∋ rgen ( P-GenericFilter P L p LP Lp0 C )) -lemma232 P L p C LP Lp0 NA MG = {!!} where + → ¬ ( (ctl-M C) ∋ rgen ( P-GenericFilter P L p LP Lp0 NEG C )) +lemma232 P L p C LP Lp0 NEG NA MG = {!!} where D : HOD -- P - G D = ?