Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1429:5f22e830e460
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jul 2023 18:19:34 +0900 |
parents | a2b59bbe5eef |
children | f2125be6fec1 |
files | src/cardinal.agda |
diffstat | 1 files changed, 35 insertions(+), 33 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sat Jul 01 16:47:37 2023 +0900 +++ b/src/cardinal.agda Sat Jul 01 18:19:34 2023 +0900 @@ -208,6 +208,11 @@ be16 {x} lt with subst (λ k → odef k x) *iso lt ... | ⟪ ax , ncn ⟫ = nimg ax ncn + cc11-case2 : {x : Ordinal} (ax : odef (* a) x) → (x₁ : ¬ gfImage x) + → ¬ odef (Image (& UC) (Injection-⊆ UC⊆a f)) (g⁻¹ (be15 (subst (λ k → odef k x) (sym *iso) ⟪ ax , x₁ ⟫)) + (be16 (subst (λ k → odef k x) (sym *iso) ⟪ ax , x₁ ⟫))) + cc11-case2 {x} ax gfi = ? + be10 : Injection (& a-UC) (b - (& (Image (& UC) (Injection-⊆ UC⊆a f) )) ) -- g⁻¹ x be10 = record { i→ = λ x lt → g⁻¹ (be15 lt) (be16 lt) ; iB = be17 ; inject = be18 } where be17 : (x : Ordinal) (lt : odef (* (& a-UC)) x) → odef (* (b - & (Image (& UC) (Injection-⊆ UC⊆a f)))) (g⁻¹ (be15 lt) (be16 lt)) @@ -218,19 +223,29 @@ be19 : odef (* b) (g⁻¹ (be15 lt) (be16 lt)) be19 = b∋g⁻¹ (be15 lt) (be16 lt) be18 : odef a-UC x → ¬ odef (Image (& UC) (Injection-⊆ UC⊆a f)) (g⁻¹ (be15 lt) (be16 lt)) - be18 ⟪ ax , ncn ⟫ record { y = y ; ay = ay ; x=fy = x=fy } = ncn ( subst (λ k → gfImage k) be13 (UC∋gf ay) ) where - be13 : fba (fab y (UC⊆a ay)) (b∋fab y (UC⊆a ay)) ≡ x - be13 = begin + be18 ⟪ ax , ncn ⟫ record { y = y ; ay = ay ; x=fy = x=fy } = ncn ( subst (λ k → gfImage k) be113 (UC∋gf ay) ) where + be113 : fba (fab y (UC⊆a ay)) (b∋fab y (UC⊆a ay)) ≡ x + be113 = begin fba (fab y (UC⊆a ay)) (b∋fab y (UC⊆a ay)) ≡⟨ fba-eq (sym x=fy) ⟩ fba (g⁻¹ (be15 lt) (be16 lt)) be19 ≡⟨ g⁻¹-iso (be15 lt) (be16 lt) ⟩ x ∎ where open ≡-Reasoning be18 : (x y : Ordinal) (ltx : odef (* (& a-UC)) x) (lty : odef (* (& a-UC)) y) → g⁻¹ (be15 ltx) (be16 ltx) ≡ g⁻¹ (be15 lty) (be16 lty) → x ≡ y be18 = ? + be13 : (x : Ordinal) → odef (* (b - & (Image (& UC) (Injection-⊆ UC⊆a f)))) x → Ordinal + be13 x lt = fba x ( proj1 ( subst (λ k → odef k x) (*iso) lt )) + + be60 : {b x : Ordinal} → (bx : odef (* b) x) → (ncn : ( ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) ) + → odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x + be60 {b} {x} bx ncn = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ + + cc10-case2 : {x : Ordinal } → (bx : odef (* b) x ) + → (x₁ : ¬ odef (Image (& UC) (Injection-⊆ UC⊆a f)) x ) + → ¬ gfImage (be13 x (subst (λ k → odef k x) (sym *iso) (be60 bx x₁))) + cc10-case2 = ? + be11 : Injection (b - (& (Image (& UC) (Injection-⊆ UC⊆a f) ))) (& a-UC) -- g x be11 = record { i→ = be13 ; iB = be14 ; inject = ? } where - be13 : (x : Ordinal) → odef (* (b - & (Image (& UC) (Injection-⊆ UC⊆a f)))) x → Ordinal - be13 x lt = fba x ( proj1 ( subst (λ k → odef k x) (*iso) lt )) be14 : (x : Ordinal) (lt : odef (* (b - & (Image (& UC) (Injection-⊆ UC⊆a f)))) x) → odef (* (& a-UC)) (be13 x lt) be14 x lt = subst (λ k → odef k (be13 x lt)) (sym *iso) ⟪ a∋fba x ( proj1 ( subst (λ k → odef k x) (*iso) lt )) , be25 ⟫ where be26 : ¬ (odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x) @@ -352,9 +367,15 @@ h⁻¹ : {x : Ordinal } → (bx : odef (* b) x) → (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) ∨ ( ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → Ordinal h⁻¹ {x} bx ( case1 cn) = Uf x (subst (λ k → odef k x) (sym *iso) cn) -- x ≡ f y - h⁻¹ {x} bx ( case2 ncn) = i→ be11 x (subst (λ k → odef k x ) (sym *iso) be60 ) where -- ¬ x ≡ f y - be60 : odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x - be60 = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ + h⁻¹ {x} bx ( case2 ncn) = i→ be11 x (subst (λ k → odef k x ) (sym *iso) (be60 bx ncn) ) -- ¬ x ≡ f y + + cc10 : {x : Ordinal} → (bx : odef (* b) x) → (cc1 : CC1 x) → CC0 (h⁻¹ bx cc1 ) + cc10 {x} bx (case1 x₁) = case1 (subst₂ (λ j k → odef j k ) *iso refl (be08 (subst (λ k → odef k x) (sym *iso) x₁))) + cc10 {x} bx (case2 x₁) = case2 (cc10-case2 bx x₁ ) + + cc11 : {x : Ordinal} → (ax : odef (* a) x) → (cc0 : CC0 x) → CC1 (h ax cc0 ) + cc11 {x} bx (case1 x₁) = case1 (subst₂ (λ j k → odef j k ) *iso refl (be04 (subst (λ k → odef k x) (sym *iso) x₁))) + cc11 {x} bx (case2 x₁) = case2 (cc11-case2 bx x₁) be70 : (x : Ordinal) (lt : odef (* a) x) → (or : gfImage x ∨ (¬ gfImage x )) → odef (* b) (h lt or ) be70 x ax ( case1 cn ) = be03 (subst (λ k → odef k x) (sym *iso) cn) where -- make the same condition for Uf @@ -372,9 +393,7 @@ be03 : (cn : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x) → odef (* a) (Uf x cn ) be03 cn with subst (λ k → odef k x ) *iso cn ... | record { y = y ; ay = ay ; x=fy = x=fy } = UC⊆a ay - be71 x bx ( case2 ncn ) = proj1 (subst₂ (λ j k → odef j k ) *iso refl (iB be11 x (subst (λ k → odef k x) (sym *iso) be60) )) where - be60 : odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x - be60 = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ + be71 x bx ( case2 ncn ) = proj1 (subst₂ (λ j k → odef j k ) *iso refl (iB be11 x (subst (λ k → odef k x) (sym *iso) (be60 bx ncn)) )) be71-1 : (x : Ordinal) (bx : odef (* b) x) → (or : (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) @@ -384,14 +403,6 @@ be70-1 : (x : Ordinal) (lt : odef (* a) x) → (or : gfImage x ∨ (¬ gfImage x )) → odef ( Image (& UC) (Injection-⊆ UC⊆a f)) (h lt or ) be70-1 = ? - cc10 : {x : Ordinal} → (bx : odef (* b) x) → (cc1 : CC1 x) → CC0 (h⁻¹ bx cc1 ) - cc10 {x} bx (case1 x₁) = case1 ? - cc10 {x} bx (case2 x₁) = ? - - cc11 : {x : Ordinal} → (ax : odef (* a) x) → (cc0 : CC0 x) → CC1 (h ax cc0 ) - cc11 {x} bx (case1 x₁) = case1 (subst₂ (λ j k → odef j k ) *iso refl (be04 (subst (λ k → odef k x) (sym *iso) x₁))) - cc11 {x} bx (case2 x₁) = ? - be74 : (x : Ordinal) (ax : odef (* a) x) → odef (* b) (h ax (cc0 x)) be74 x ax with cc0 x ... | case1 lt1 = ? @@ -410,8 +421,9 @@ ImageUnique {a} {b} {x} {F} i j = inject F _ _ (IsImage.ay i) (IsImage.ay j) (trans (sym (IsImage.x=fy i)) (IsImage.x=fy j)) be72 : (x : Ordinal) (bx : odef (* b) x) → (cc1 : CC1 x) → h (be71 x bx cc1 ) (cc10 bx cc1) ≡ x - be72 x bx (case1 (x₁ @ record { y = y ; ay = ay ; x=fy = x=fy })) = UC-iso11 x be76 - (subst (λ k → odef k (IsImage.y (subst (λ k → odef k x) *iso be76))) (sym *iso) be77 ) where + be72 x bx (case1 (x₁ @ record { y = y ; ay = ay ; x=fy = x=fy })) = ? where + -- UC-iso11 x be76 + -- (subst (λ k → odef k (IsImage.y (subst (λ k → odef k x) *iso be76))) (sym *iso) be77 ) where be76 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x be76 = subst (λ k → odef k x) (sym *iso) x₁ be78 : y ≡ IsImage.y (subst (λ k → odef k x) *iso be76) @@ -423,18 +435,8 @@ ... | case1 (next-gf record { y = y ; ay = ay ; x=fy = x=fy } c1) = ⊥-elim (x₁ record { y = y ; ay = subst (λ k → odef k y) (sym *iso) c1 ; x=fy = inject g _ _ _ (b∋fab y _) (trans x=fy (fba-eq (fab-eq refl))) }) - ... | case2 c2 with ODC.p∨¬p O ( IsImage b a g (fba x (proj1 ( subst (λ k → odef k x) (*iso) - (subst (λ k → OD.def (od k) x) (sym *iso) ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫) ))) ) - ... | case1 record { y = y ; ay = ay ; x=fy = x=fy } = sym ( inject g _ _ (proj1 ( subst (λ k → odef k x) (*iso) (subst (λ k → OD.def (od k) x) (sym *iso) ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫) )) ? ? ) - ... | case2 nimg = ? - -- = trans (g⁻¹-eq _ (be15 be51) {_} {be16 be51}) be50 where - -- be52 : odef (* (b - (& (Image (& UC) (Injection-⊆ UC⊆a f) )))) x - -- be52 = subst (λ k → OD.def (od k) x) (sym *iso) ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫ - -- be51 : odef (* (& a-UC)) (fba x (proj1 (subst (λ k → OD.def (od k) x) *iso be52))) - -- be51 = subst (λ k → odef k (fba x (proj1 (subst (λ k → OD.def (od k) x) *iso be52)))) (sym *iso) - -- ⟪ a∋fba x (proj1 (subst (λ k → OD.def (od k) x) *iso be52)) , ? ⟫ - -- be50 : g⁻¹ (be15 be51) (be16 be51) ≡ x - -- be50 = ? + ... | case2 c2 with nimg (a∋fba x bx) (subst (λ k → gfImage (fba x k) → ⊥) ? c2 ) + ... | record { y = y ; ay = ay ; x=fy = x=fy } = sym (inject g _ _ ? ? ?) be73 : (x : Ordinal) (ax : odef (* a) x) → (cc0 : CC0 x ) → h⁻¹ (be70 x ax cc0) (cc11 ax cc0) ≡ x