Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 457:5f8243d1d41b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Mar 2022 16:40:54 +0900 |
parents | 9207b0c3cfe9 |
children | 882c24efdc3f |
files | src/filter.agda src/generic-filter.agda |
diffstat | 2 files changed, 71 insertions(+), 58 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Thu Mar 17 15:36:24 2022 +0900 +++ b/src/filter.agda Thu Mar 17 16:40:54 2022 +0900 @@ -1,3 +1,5 @@ +{-# OPTIONS --allow-unsolved-metas #-} + open import Level open import Ordinals module filter {n : Level } (O : Ordinals {n}) where @@ -59,7 +61,7 @@ open _⊆_ ∈-filter : {L p : HOD} → (F : Filter L ) → filter F ∋ p → L ∋ p -∈-filter {L} {p} F lt = {!!} -- power→⊆ L p ( incl ? lt ) +∈-filter {L} {p} F lt = incl ( f⊆L F) lt ∪-lemma1 : {L p q : HOD } → (p ∪ q) ⊆ L → p ⊆ L ∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) } @@ -67,6 +69,12 @@ ∪-lemma2 : {L p q : HOD } → (p ∪ q) ⊆ L → q ⊆ L ∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) } +∪-lemma3 : {L P p q : HOD } → L ⊆ Power P → L ∋ (p ∪ q) → L ∋ p +∪-lemma3 = {!!} + +∪-lemma4 : {L P p q : HOD } → L ⊆ Power P → L ∋ (p ∪ q) → L ∋ q +∪-lemma4 = {!!} + q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q q∩q⊆q = record { incl = λ lt → proj1 lt } @@ -83,8 +91,8 @@ ; prime = lemma3 } where lemma3 : {p q : HOD} → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) - lemma3 {p} {q} lt with ultra-filter.ultra u {!!} -- (∪-lemma1 (∈-filter P lt) ) - ... | case1 p∈P = case1 p∈P + lemma3 {p} {q} lt with ultra-filter.ultra u (∈-filter F lt) + ... | case1 p∈P = case1 {!!} -- (∪-lemma3 (ultra-filter.L⊆PP u) ? ) -- : OD.def (od (filter F)) (& p) ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (L \ p)} {!!} lemma7 lemma8) where lemma5 : ((p ∪ q ) ∩ (L \ p)) =h= (q ∩ (L \ p)) lemma5 = record { eq→ = λ {x} lt → ⟪ lemma4 x lt , proj2 lt ⟫ @@ -95,7 +103,7 @@ lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx lemma6 : filter F ∋ ((p ∪ q ) ∩ (P \ p)) - lemma6 = filter2 F lt ¬p∈P + lemma6 = {!!} -- filter2 F lt ¬p∈P lemma7 : filter F ∋ (q ∩ (L \ p)) lemma7 = subst (λ k → filter F ∋ k ) (==→o≡ lemma5 ) {!!} lemma8 : (q ∩ (L \ p)) ⊆ q
--- a/src/generic-filter.agda Thu Mar 17 15:36:24 2022 +0900 +++ b/src/generic-filter.agda Thu Mar 17 16:40:54 2022 +0900 @@ -67,45 +67,45 @@ -- find-p contains ∃ x : Ordinal → x o< & M → ∀ r ∈ M → ∈ Ord x -- --- we expect P ∈ * ctl-M ∧ G ⊆ Power P , ¬ G ∈ * ctl-M, +-- we expect P ∈ * ctl-M ∧ G ⊆ L ⊆ Power P , ¬ G ∈ * ctl-M, open CountableModel ---- -- a(n) ∈ M --- ∃ q ∈ Power P → q ∈ a(n) ∧ q ⊆ p(n) +-- ∃ q ∈ L ⊆ Power P → q ∈ a(n) ∧ q ⊆ p(n) -- -PGHOD : (i : Nat) (P : HOD) (C : CountableModel ) → (p : Ordinal) → HOD -PGHOD i P C p = record { od = record { def = λ x → - odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* x) y → odef (* p) y ) } - ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } +PGHOD : (i : Nat) (L : HOD) (C : CountableModel ) → (p : Ordinal) → HOD +PGHOD i L C p = record { od = record { def = λ x → + odef L x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* x) y → odef (* p) y ) } + ; odmax = odmax L ; <odmax = λ {y} lt → <odmax L (proj1 lt) } --- -- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) -- -find-p : (P : HOD ) (C : CountableModel ) (i : Nat) → (x : Ordinal) → Ordinal -find-p P C Zero x = x -find-p P C (Suc i) x with is-o∅ ( & ( PGHOD i P C (find-p P C i x)) ) -... | yes y = find-p P C i x -... | no not = & (ODC.minimal O ( PGHOD i P C (find-p P C i x)) (λ eq → not (=od∅→≡o∅ eq))) -- axiom of choice +find-p : (L : HOD ) (C : CountableModel ) (i : Nat) → (x : Ordinal) → Ordinal +find-p L C Zero x = x +find-p L C (Suc i) x with is-o∅ ( & ( PGHOD i L C (find-p L C i x)) ) +... | yes y = find-p L C i x +... | no not = & (ODC.minimal O ( PGHOD i L C (find-p L C i x)) (λ eq → not (=od∅→≡o∅ eq))) -- axiom of choice --- --- G = { r ∈ Power P | ∃ n → p(n) ⊆ r } +-- G = { r ∈ L ⊆ Power P | ∃ n → p(n) ⊆ r } -- -record PDN (P p : HOD ) (C : CountableModel ) (x : Ordinal) : Set n where +record PDN (L p : HOD ) (C : CountableModel ) (x : Ordinal) : Set n where field gr : Nat - pn<gr : (y : Ordinal) → odef (* (find-p P C gr (& p))) y → odef (* x) y - x∈PP : odef (Power P) x + pn<gr : (y : Ordinal) → odef (* (find-p L C gr (& p))) y → odef (* x) y + x∈PP : odef L x open PDN --- -- G as a HOD -- -PDHOD : (P p : HOD ) (C : CountableModel ) → HOD -PDHOD P p C = record { od = record { def = λ x → PDN P p C x } - ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.x∈PP lt) } +PDHOD : (L p : HOD ) (C : CountableModel ) → HOD +PDHOD L p C = record { od = record { def = λ x → PDN L p C x } + ; odmax = odmax L ; <odmax = λ {y} lt → <odmax L {y} (PDN.x∈PP lt) } open PDN @@ -127,49 +127,54 @@ open import nat open _⊆_ -p-monotonic1 : (P p : HOD ) (C : CountableModel ) → {n : Nat} → (* (find-p P C (Suc n) (& p))) ⊆ (* (find-p P C n (& p))) -p-monotonic1 P p C {n} with is-o∅ (& (PGHOD n P C (find-p P C n (& p)))) +p-monotonic1 : (L p : HOD ) (C : CountableModel ) → {n : Nat} → (* (find-p L C (Suc n) (& p))) ⊆ (* (find-p L C n (& p))) +p-monotonic1 L p C {n} with is-o∅ (& (PGHOD n L C (find-p L C n (& p)))) ... | yes y = refl-⊆ ... | no not = record { incl = λ {x} lt → proj2 (proj2 fmin∈PGHOD) (& x) lt } where fmin : HOD - fmin = ODC.minimal O (PGHOD n P C (find-p P C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) - fmin∈PGHOD : PGHOD n P C (find-p P C n (& p)) ∋ fmin - fmin∈PGHOD = ODC.x∋minimal O (PGHOD n P C (find-p P C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) + fmin = ODC.minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) + fmin∈PGHOD : PGHOD n L C (find-p L C n (& p)) ∋ fmin + fmin∈PGHOD = ODC.x∋minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) -p-monotonic : (P p : HOD ) (C : CountableModel ) → {n m : Nat} → n ≤ m → (* (find-p P C m (& p))) ⊆ (* (find-p P C n (& p))) -p-monotonic P p C {Zero} {Zero} n≤m = refl-⊆ -p-monotonic P p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic1 P p C {m} ) (p-monotonic P p C {Zero} {m} z≤n ) -p-monotonic P p C {Suc n} {Suc m} (s≤s n≤m) with <-cmp n m -... | tri< a ¬b ¬c = trans-⊆ (p-monotonic1 P p C {m}) (p-monotonic P p C {Suc n} {m} a) +p-monotonic : (L p : HOD ) (C : CountableModel ) → {n m : Nat} → n ≤ m → (* (find-p L C m (& p))) ⊆ (* (find-p L C n (& p))) +p-monotonic L p C {Zero} {Zero} n≤m = refl-⊆ +p-monotonic L p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic1 L p C {m} ) (p-monotonic L p C {Zero} {m} z≤n ) +p-monotonic L p C {Suc n} {Suc m} (s≤s n≤m) with <-cmp n m +... | tri< a ¬b ¬c = trans-⊆ (p-monotonic1 L p C {m}) (p-monotonic L p C {Suc n} {m} a) ... | tri≈ ¬a refl ¬c = refl-⊆ ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) -P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel ) → GenericFilter P -P-GenericFilter P p0 Pp0 C = record { - genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } - ; generic = fdense +P-GenericFilter : (P L p0 : HOD ) → L ⊆ Power P → L ∋ p0 → (C : CountableModel ) → GenericFilter L +P-GenericFilter P L p0 L⊆PP Lp0 C = record { + genf = record { filter = PDHOD L p0 C ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } + ; generic = {!!} } where - PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i P C x ⊆ Power P - PGHOD∈PL i x = record { incl = λ {x} p → proj1 p } - f⊆PL : PDHOD P p0 C ⊆ Power P - f⊆PL = record { incl = λ {x} lt → x∈PP lt } + PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i L C x ⊆ Power P + PGHOD∈PL i x = record { incl = λ {x} p → {!!} } + Pp0 : p0 ∈ Power P + Pp0 = {!!} + f⊆PL : PDHOD L p0 C ⊆ Power P + f⊆PL = record { incl = λ {x} lt → {!!} } -- x∈PP lt } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q - f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = power← _ _ (incl q⊆P) } where + f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = {!!} } where -- power← _ _ (incl q⊆P) } where f04 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y f04 y lt1 = subst₂ (λ j k → odef j k ) (sym *iso) &iso (incl p⊆q (subst₂ (λ j k → odef k j ) (sym &iso) *iso ( pn<gr PD∋p y lt1 ))) -- odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q with <-cmp (gr PD∋q) (gr PD∋p) - ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where + ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt); x∈PP = {!!} } where + -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y (f5 lt)) ⟫ where f5 : odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (find-p P C (gr PD∋q) (& p0))) y f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋q} {gr PD∋p} (<to≤ a)) (subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) (sym &iso) lt) ) - ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where + ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt); x∈PP = {!!} } where + -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f4 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f4 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ - ... | tri> ¬a ¬b c = record { gr = gr PD∋q ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt) ; x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where + ... | tri> ¬a ¬b c = record { gr = gr PD∋q ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt) ; x∈PP = {!!} } where -- + -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (p ∩ q) y f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y (f5 lt)) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ where f5 : odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (* (find-p P C (gr PD∋p) (& p0))) y @@ -178,16 +183,16 @@ fdense : (D : Dense P ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD P p0 C} fd01 (≡od∅→=od∅ eq0 )) where open Dense - p0⊆P : p0 ⊆ P - p0⊆P = ODC.power→⊆ O _ _ Pp0 + p0⊆P : P ∋ p0 + p0⊆P = {!!} fd : HOD fd = dense-f D p0⊆P PP∋D : dense D ⊆ Power P - PP∋D = d⊆P D + PP∋D = {!!} fd00 : PDHOD P p0 C ∋ p0 - fd00 = record { gr = 0 ; pn<gr = λ y lt → lt ; x∈PP = Pp0 } - fd02 : dense D ∋ dense-f D p0⊆P - fd02 = dense-d D p0⊆P + fd00 = record { gr = 0 ; pn<gr = λ y lt → lt ; x∈PP = {!!} } + fd02 : dense D ∋ dense-f D {!!} -- p0⊆P + fd02 = dense-d D {!!} fd04 : dense-f D p0⊆P ⊆ P fd04 = ODC.power→⊆ O _ _ ( incl PP∋D fd02 ) fd03 : PDHOD P p0 C ∋ dense-f D p0⊆P @@ -211,11 +216,11 @@ lemma725 : (P p : HOD ) (C : CountableModel ) → (PP∋p : Power P ∋ p ) → * (ctl-M C) ∋ (Power P ∩ * (ctl-M C)) -- M is a Model of ZF - → * (ctl-M C) ∋ ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P p PP∋p C)) ) -- M ∋ G and M is a Model of ZF + → * (ctl-M C) ∋ {!!} -- ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P ? p ? C ? )) ) -- M ∋ G and M is a Model of ZF → ((p : HOD) → (PP∋p : p ⊆ P ) → Incompatible P p PP∋p ) - → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p PP∋p C ))) + → ¬ ( * (ctl-M C) ∋ filter {!!} ) -- ( genf ( P-GenericFilter P ? ? p PP∋p C ))) lemma725 P p C PP∋p M∋PM M∋D I M∋G = D∩G≠∅ D∩G=∅ where - G = filter ( genf ( P-GenericFilter P p PP∋p C )) + G = filter ( genf ( P-GenericFilter P {!!} p {!!} {!!} C )) M = * (ctl-M C) D : HOD D = Power P \ G @@ -244,15 +249,15 @@ D-Dense : Dense P D-Dense = record { dense = D - ; d⊆P = record { incl = λ {x} lt → proj1 lt } - ; dense-f = df - ; dense-d = df-d + ; d⊆P = record { incl = λ {x} lt → {!!} } + ; dense-f = {!!} + ; dense-d = {!!} ; dense-p = {!!} } D∩G=∅ : ( D ∩ G ) =h= od∅ D∩G=∅ = ≡od∅→=od∅ ([a-b]∩b=0 {Power P} {G}) D∩G≠∅ : ¬ (( D ∩ G ) =h= od∅ ) - D∩G≠∅ eq = generic (P-GenericFilter P p PP∋p C) D-Dense ( ==→o≡ eq ) + D∩G≠∅ eq = generic (P-GenericFilter P {!!} {!!} {!!} {!!} C) D-Dense ( ==→o≡ eq ) open import PFOD O @@ -265,7 +270,7 @@ lemma725-1 = {!!} lemma726 : (C : CountableModel ) - → Union ( Replace' (Power (ω→2 \ HODω2)) (λ p lt → filter ( genf ( P-GenericFilter (ω→2 \ HODω2) p lt C )))) =h= ω→2 -- HODω2 ∋ p + → Union ( Replace' (Power (ω→2 \ HODω2)) (λ p lt → filter ( genf ( P-GenericFilter {!!} (ω→2 \ HODω2) p {!!} {!!} C )))) =h= ω→2 -- HODω2 ∋ p lemma726 = {!!} --