Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1147:607a79aef297
Union for cover
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Jan 2023 12:54:51 +0900 |
parents | 1966127fc14f |
children | |
files | src/OD.agda src/Topology.agda |
diffstat | 2 files changed, 11 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Mon Jan 16 10:50:30 2023 +0900 +++ b/src/OD.agda Mon Jan 16 12:54:51 2023 +0900 @@ -217,6 +217,9 @@ ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d ∅< {x} {y} d eq | lift () +0<P→ne : { x : HOD } → o∅ o< & x → ¬ ( od x == od od∅ ) +0<P→ne {x} 0<x eq = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ eq)) 0<x ) + ∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) ∈∅< {x} {y} d with trio< o∅ (& x) ... | tri< a ¬b ¬c = a
--- a/src/Topology.agda Mon Jan 16 10:50:30 2023 +0900 +++ b/src/Topology.agda Mon Jan 16 12:54:51 2023 +0900 @@ -203,13 +203,8 @@ -- covers -record _covers_ ( P q : HOD ) : Set n where - field - cover : {x : Ordinal } → odef q x → Ordinal - P∋cover : {x : Ordinal } → (lt : odef q x) → odef P (cover lt) - isCover : {x : Ordinal } → (lt : odef q x) → odef (* (cover lt)) x - -open _covers_ +_covers_ : ( P q : HOD ) → Set n +P covers q = q ⊆ Union P -- Finite Intersection Property @@ -243,13 +238,13 @@ FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top FIP→Compact {L} top fip with trio< (& L) o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) -... | tri≈ ¬a b ¬c = record { finCover = λ _ _ → & ( od∅ , od∅ ) ; isCover = λ {X} _ xcp → fip01 xcp ; isFinite = fip00 } where +... | tri≈ ¬a b ¬c = record { finCover = λ {X} xo xcp → ? ; isCover = λ {X} _ xcp → fip01 xcp ; isFinite = fip00 } where fip02 : {x : Ordinal } → ¬ odef L x fip02 {x} Lx = ⊥-elim ( o<¬≡ (sym b) (∈∅< Lx) ) - fip01 : {X : Ordinal } → (xcp : * X covers L) → * (& ( od∅ , od∅ )) covers L - fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } - fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (& ( od∅ , od∅ )) - fip00 {X} xo xcp = fin-e ? + fip01 : {X : Ordinal } → (xcp : * X covers L) → * ? covers L + fip01 xcp = ? + fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) ? + fip00 {X} xo xcp = fin-e ? ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where -- set of coset of X CX : {X : Ordinal} → * X ⊆ OS top → Ordinal @@ -308,7 +303,7 @@ fip21 : odef (L \ * y) ( FIP.limit fip (CCX ox) fip02 ) fip21 = subst (λ k → odef k ( FIP.limit fip (CCX ox) fip02 ) ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip22 ) fip09 : {z : Ordinal } → odef L z → ¬ ( {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) z )) - fip09 {z} Lz nc = nc ( P∋cover oc Lz ) (subst (λ k → odef (* (cover oc Lz)) k) refl (isCover oc _ )) + fip09 {z} Lz nc = nc ? (subst (λ k → odef ? k) refl ?) ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅ ¬CXfip {X} ox oc = {!!} where fip04 : odef Cex (cex ox oc)