Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1233:61fc99e65055
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Mar 2023 19:52:41 +0900 |
parents | 2839815e7b50 |
children | 90e0e9fde1d6 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 14 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Wed Mar 08 18:47:07 2023 +0900 +++ b/src/Tychonoff.agda Wed Mar 08 19:52:41 2023 +0900 @@ -500,16 +500,22 @@ -- FPSet is in Projection ⁻¹ F FPSet⊆F : {x : Ordinal } → odef FPSet x → odef (filter F) (& (ZFP (* x) Q)) - FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ? (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where + FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ty80 (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where Rx : HOD Rx = Replace' (* z) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) RxQ∋z : * z ⊆ ZFP Rx Q RxQ∋z {w} zw = subst (λ k → ZFProduct Rx Q k ) ty70 ( ab-pair record { z = w ; az = zw ; x=ψz = refl } (zp2 (f⊆L F az _ zw ) ) ) where a = F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw) b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw ) + ty71 : & (* (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw)))) + ≡ zπ1 (subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw )) + ty71 = begin + & (* (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw)))) ≡⟨ &iso ⟩ + zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw)) ≡⟨ cong zπ1 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b)) ⟩ + zπ1 (subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw )) ∎ where open ≡-Reasoning ty70 : & < * (& (* (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw))))) , * (zπ2 (f⊆L F az w zw)) > ≡ w - ty70 = trans (cong₂ (λ j k → & < * j , k > ) (trans &iso (cong zπ1 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b )))) refl ) (trans ? (zp-iso (f⊆L F az _ zw ) )) + ty70 = trans (cong₂ (λ j k → & < * j , k > ) ? refl ) (zp-iso (f⊆L F az _ zw ) ) ty71 : * z ⊆ ZFP (* x) Q ty71 = subst (λ k → * z ⊆ ZFP k Q) ty72 RxQ∋z where ty72 : Rx ≡ * x @@ -517,6 +523,12 @@ Rx ≡⟨ sym *iso ⟩ * (& Rx) ≡⟨ cong (*) (sym x=ψz ) ⟩ * x ∎ where open ≡-Reasoning + ty80 : Power (ZFP P Q) ∋ ZFP (* x) Q + ty80 y yx = isP→PxQ ty81 (subst (λ k → odef k y ) *iso yx ) where + ty81 : * x ⊆ P + ty81 {w} xw with subst (λ k → odef k w) (trans (cong (*) x=ψz ) *iso ) xw + ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (trans (sym &iso) (sym x=ψz1)) ? + -- ( zp1 (f⊆L F az _ ? ) ) -- copy and pasted, sorry --