Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1158:6216562a2bce
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Jan 2023 11:22:37 +0900 |
parents | d6a8738ac505 |
children | adba530ce1f0 |
files | src/Topology.agda src/filter.agda src/maximum-filter.agda |
diffstat | 3 files changed, 58 insertions(+), 44 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Thu Jan 19 17:22:02 2023 +0900 +++ b/src/Topology.agda Fri Jan 20 11:22:37 2023 +0900 @@ -401,9 +401,8 @@ fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw --- some day -Compact→FIP : Set (suc n) -Compact→FIP = {L : HOD} → (top : Topology L ) → Compact top → FIP top +Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top +Compact→FIP = ? -- existence of Ultra Filter @@ -420,13 +419,12 @@ -- FIP is UFL -record NFIP {P : HOD} (TP : Topology P) {X : Ordinal } (LP : * X ⊆ CS TP ) (u : Ordinal) : Set n where +record NFIP (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where field b x : Ordinal b⊆X : * b ⊆ * X sb : Subbase (* b) x - 0<x : o∅ o< x - X∋u : odef (* X) u + u⊆P : * u ⊆ P x⊆u : * x ⊆ * u open import maximum-filter O @@ -437,20 +435,22 @@ fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD - N {X} CSX fp = record { od = record { def = λ u → NFIP TP {X} CSX u } ; odmax = X - ; <odmax = λ {x} lt → subst₂ (λ j k → j o< k) refl &iso (odef< (NFIP.X∋u lt)) } - N⊆PX : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ * X - N⊆PX {X} CSX fp {z} nz = NFIP.X∋u nz - X⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → * X ⊆ Power P - X⊆PP CSX lt = CS⊆PL TP (CSX lt) - F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {* X} {P} (X⊆PP CSX) - F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PX CSX fp ; filter1 = f1 ; filter2 = f2 } where - f1 : {p q : HOD} → * X ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q - f1 {p} {q} Xq record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; 0<x = 0<x ; X∋u = Xp ; x⊆u = x⊆p } p⊆q = - record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; 0<x = 0<x ; X∋u = Xq ; x⊆u = λ {z} xp → - subst (λ k → odef k z) (sym *iso) (p⊆q (subst (λ k → odef k z) *iso (x⊆p xp))) } - f2 : {p q : HOD} → N CSX fp ∋ p → N CSX fp ∋ q → * X ∋ (p ∩ q) → N CSX fp ∋ (p ∩ q) - f2 {p} {q} Np Nq Xpq = record { b = & Np+Nq ; x = & xp∧xq ; b⊆X = f20 ; sb = sbpq ; 0<x = f21 ; X∋u = Xpq ; x⊆u = f22 } where + N {X} CSX fp = record { od = record { def = λ u → NFIP P X u } ; odmax = osuc (& P) + ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (NFIP.u⊆P lt)) } + N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P + N⊆PP CSX fp nx b xb = NFIP.u⊆P nx xb + F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {Power P} {P} (λ x → x) + F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PP CSX fp ; filter1 = f1 ; filter2 = f2 } where + f1 : {p q : HOD} → Power P ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q + f1 {p} {q} Xq record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = Xp ; x⊆u = x⊆p } p⊆q = + record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = subst (λ k → k ⊆ P) (sym *iso) f10 ; x⊆u = λ {z} xp → + subst (λ k → odef k z) (sym *iso) (p⊆q (subst (λ k → odef k z) *iso (x⊆p xp))) } where + f10 : q ⊆ P + f10 {x} qx = subst (λ k → odef P k) &iso (power→ P _ Xq (subst (λ k → odef q k) (sym &iso) qx )) + f2 : {p q : HOD} → N CSX fp ∋ p → N CSX fp ∋ q → Power P ∋ (p ∩ q) → N CSX fp ∋ (p ∩ q) + f2 {p} {q} Np Nq Xpq = record { b = & Np+Nq ; x = & xp∧xq ; b⊆X = f20 ; sb = sbpq ; u⊆P = p∩q⊆p ; x⊆u = f22 } where + p∩q⊆p : * (& (p ∩ q)) ⊆ P + p∩q⊆p {x} pqx = subst (λ k → odef P k) &iso (power→ P _ Xpq (subst₂ (λ j k → odef j k ) *iso (sym &iso) pqx )) Np+Nq = * (NFIP.b Np) ∪ * (NFIP.b Nq) xp∧xq = * (NFIP.x Np) ∩ * (NFIP.x Nq) sbpq : Subbase (* (& Np+Nq)) (& xp∧xq) @@ -459,37 +459,51 @@ f20 {x} npq with subst (λ k → odef k x) *iso npq ... | case1 np = NFIP.b⊆X Np np ... | case2 nq = NFIP.b⊆X Nq nq - f21 : o∅ o< & xp∧xq - f21 = fp f20 sbpq f22 : * (& xp∧xq) ⊆ * (& (p ∩ q)) f22 = subst₂ ( λ j k → j ⊆ k ) (sym *iso) (sym *iso) (λ {w} xpq → ⟪ subst (λ k → odef k w) *iso ( NFIP.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( NFIP.x⊆u Nq (proj2 xpq)) ⟫ ) proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ¬ (N CSX fp ∋ od∅) proper = ? - CAP : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → {p q : HOD } → * X ∋ p → * X ∋ q → * X ∋ (p ∩ q) - CAP = ? - maxf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (X⊆PP CSX) (F CSX fp) - maxf {X} CSX fp = F→Maximum (X⊆PP CSX) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp) + CAP : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) + CAP {X} CSX fp {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) *iso pqx + ... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) (sym *iso) px ) + maxf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) + maxf {X} CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp) uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal - uf00 {X} CSX fp = UFLP.limit ( uflp (X⊆PP CSX) + uf00 {X} CSX fp = UFLP.limit ( uflp (λ x → x) ( MaximumFilter.mf (maxf CSX fp) ) - (F→ultra (X⊆PP CSX) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp))) + (F→ultra {Power P} {P} (λ x → x) (CAP CSX fp) (F CSX fp) ? ? (proper CSX fp))) --- some day -FIP→UFLP : Set (suc (suc n)) -FIP→UFLP = {P : HOD} (TP : Topology P) → FIP TP - → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF +FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP + → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF +FIP→UFLP = ? -- product topology of compact topology is compact Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) -Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflp ) where +Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where L = pbase TP TQ LPQ = pbase⊆PL TP TQ + uflP : {L : HOD} → (LP : L ⊆ Power P) (F : Filter {L} LP) (UF : ultra-filter F) + → UFLP TP LP F UF + uflP {L} LP F UF = FIP→UFLP TP (Compact→FIP TP CP) LP F UF + uflQ : {L : HOD} → (LP : L ⊆ Power Q) (F : Filter {L} LP) (UF : ultra-filter F) + → UFLP TQ LP F UF + uflQ {L} LP F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) LP F UF -- Product of UFL has limit point - uflp : {L : HOD} → (LP : L ⊆ Power (ZFP P Q )) (F : Filter {L} LP) (UF : ultra-filter F) - → UFLP (ProductTopology TP TQ) LP F UF - uflp {L} LP F UF = record { limit = & < ? , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } + uflPQ : {L : HOD} → (LPQ : L ⊆ Power (ZFP P Q )) (F : Filter {L} LPQ) (UF : ultra-filter F) + → UFLP (ProductTopology TP TQ) LPQ F UF + uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where + LP : HOD + LP = ZFPproj1 (λ {x} p → LPQ ? _ p ) + LPP : L ⊆ Power P + LPP = ? + FP : Filter ? + FP = ? + UFP : ultra-filter FP + UFP = ? + uflp : UFLP TP LPP FP UFP + uflp = ?
--- a/src/filter.agda Thu Jan 19 17:22:02 2023 +0900 +++ b/src/filter.agda Fri Jan 20 11:22:37 2023 +0900 @@ -318,11 +318,3 @@ (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fq) Lpq ) ; proper = subst₂ (λ j k → ¬ odef j k ) (sym *iso) ord-od∅ proper } - --- all filter contains F -F⊆X : { L P : HOD } (LP : L ⊆ Power P) → Filter {L} {P} LP → HOD -F⊆X {L} {P} LP F = record { od = record { def = λ x → IsFilter {L} {P} LP x ∧ ( filter F ⊆ * x) } ; odmax = osuc (& L) - ; <odmax = λ {x} lt → fx00 lt } where - fx00 : {x : Ordinal } → IsFilter LP x ∧ filter F ⊆ * x → x o< osuc (& L) - fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (IsFilter.f⊆L (proj1 lt )) ) -
--- a/src/maximum-filter.agda Thu Jan 19 17:22:02 2023 +0900 +++ b/src/maximum-filter.agda Fri Jan 20 11:22:37 2023 +0900 @@ -55,6 +55,14 @@ import zorn open zorn O _⊂_ PO + +-- all filter contains F +F⊆X : { L P : HOD } (LP : L ⊆ Power P) → Filter {L} {P} LP → HOD +F⊆X {L} {P} LP F = record { od = record { def = λ x → IsFilter {L} {P} LP x ∧ ( filter F ⊆ * x) } ; odmax = osuc (& L) + ; <odmax = λ {x} lt → fx00 lt } where + fx00 : {x : Ordinal } → IsFilter LP x ∧ filter F ⊆ * x → x o< osuc (& L) + fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (IsFilter.f⊆L (proj1 lt )) ) + F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → o∅ o< & L → {y : Ordinal } → odef (filter F) y → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F F→Maximum {L} {P} LP CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = subst (λ k → filter F ⊆ k ) (sym *iso) mf52