Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 340:639fbb6284d8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jul 2020 09:26:34 +0900 |
parents | feb0fcc430a9 |
children | 27d2933c4bd7 |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 22 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 12 19:55:37 2020 +0900 +++ b/OD.agda Mon Jul 13 09:26:34 2020 +0900 @@ -387,10 +387,28 @@ lemma3 = FExists _ (λ {z} t not → not (od→ord (ord→od y , ord→od y)) record { proj1 = case2 refl ; proj2 = lemma4 }) (λ not → not y (infinite-d y)) where lemma4 : def (od (ord→od (od→ord (ord→od y , ord→od y)))) y lemma4 = subst₂ ( λ j k → def (od j) k ) (sym oiso) diso (case1 refl) + lemma5 : y o< odmax (u y) + lemma5 = <odmax (u y) lemma3 + lemma6 : y o< odmax (ord→od y , (ord→od y , ord→od y)) + lemma6 = <odmax (ord→od y , (ord→od y , ord→od y)) (subst ( λ k → def (od (ord→od y , (ord→od y , ord→od y))) k ) diso (case1 refl)) + lemma8 : od→ord (ord→od y , ord→od y) o< next (odmax (ord→od y , ord→od y)) + lemma8 = ho< + lemma81 : od→ord (ord→od y , ord→od y) o< next (od→ord (ord→od y)) + lemma81 = nexto=n (subst (λ k → od→ord (ord→od y , ord→od y) o< k ) (cong (λ k → next k) (omxx _)) lemma8) + lemma7 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (odmax (ord→od y , (ord→od y , ord→od y))) + lemma91 : od→ord (ord→od y) o< od→ord (ord→od y , ord→od y) + lemma91 = c<→o< (case1 refl) + lemma92 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next y + lemma92 = {!!} + lemma9 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y , ord→od y)) + lemma9 = next< {!!} lemma92 + lemma7 = ho< + lemma71 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y)) + lemma71 = next< lemma81 lemma9 lemma1 : od→ord (u y) o< next (osuc (od→ord (ord→od y , (ord→od y , ord→od y)))) lemma1 = ho< lemma2 : od→ord (u y) o< next o∅ - lemma2 = {!!} + lemma2 = next< lemma0 (next< (subst (λ k → od→ord (ord→od y , (ord→od y , ord→od y)) o< next k) diso lemma71 ) (nexto=n lemma1)) _=h=_ : (x y : HOD) → Set n
--- a/Ordinals.agda Sun Jul 12 19:55:37 2020 +0900 +++ b/Ordinals.agda Mon Jul 13 09:26:34 2020 +0900 @@ -228,6 +228,9 @@ next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (proj2 (proj2 next-limit) (next z) x<nz (ordtrans c y<nx ) (λ w nz=ow → o<¬≡ (sym nz=ow) (proj1 (proj2 next-limit) _ (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) + nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y + nexto=n {x} {y} x<noy = next< (proj1 (proj2 next-limit) _ (proj1 next-limit)) x<noy + record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field os→ : (x : Ordinal) → x o< maxordinal → Ordinal