Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 491:646831f6b06d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Apr 2022 22:19:05 +0900 |
parents | 00c71d1dc316 |
children | e28b1da1b58d |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Apr 08 22:03:01 2022 +0900 +++ b/src/zorn.agda Fri Apr 08 22:19:05 2022 +0900 @@ -47,13 +47,6 @@ open Element -TotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) -TotalOrderSet A _<_ = Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) - -PartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) -PartialOrderSet A _<_ = (a b : Element A) - → (elm a < elm b → ((¬ elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a)) - IsPartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) IsPartialOrderSet A _<_ = IsPartialOrder _<A_ _≡A_ where _<A_ : (x y : Element A ) → Set n @@ -88,14 +81,15 @@ record ZChain ( A : HOD ) (y : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field - fb : (x : Ordinal ) → x o< y → HOD - A∋fb : (ox : Ordinal ) → (x<y : ox o< y ) → A ∋ fb ox x<y - monotonic : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ox o< oz → fb ox x<y < fb oz z<y + fb : (x : Ordinal ) → HOD + A∋fb : (ox : Ordinal ) → ox o< y → A ∋ fb ox + total : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ( ox ≡ oz ) ∨ ( fb ox < fb oz ) ∨ ( fb oz < fb ox ) + monotonic : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ox o< oz → fb ox < fb oz Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A - → PartialOrderSet A _<_ - → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B _<_ ) -- SUP condition + → IsPartialOrderSet A _<_ + → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B _<_ → SUP A B _<_ ) -- SUP condition → Maximal A _<_ Zorn-lemma {A} {_<_} 0<A PO supP = zorn00 where someA : HOD @@ -113,28 +107,28 @@ z09 : {y : Ordinal} → (odef A y ∧ (x < (* y))) → y o< & A z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ - z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a - z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b + z01 {a} {b} A∋a A∋b (case1 a=b) b<a = {!!} -- proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!} -- proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b -- ZChain is not compatible with the SUP condition - record BX (x y : Ordinal) (fb : ( x : Ordinal ) → (x o< y ) → HOD ) : Set n where + record BX (x y : Ordinal) (fb : ( x : Ordinal ) → HOD ) : Set n where field bx : Ordinal bx<y : bx o< y - is-fb : x ≡ & (fb bx bx<y ) + is-fb : x ≡ & (fb bx ) bx<A : (z : ZChain A (& A) _<_ ) → {x : Ordinal } → (bx : BX x (& A) ( ZChain.fb z )) → BX.bx bx o< & A bx<A z {x} bx = BX.bx<y bx B : (z : ZChain A (& A) _<_ ) → HOD B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } - z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) (bx<A z (is-elm x)) + z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z ? z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal obx z {x} bx = BX.bx bx - obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) (bx<A z bx ) + obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z {!!} obx=fb z {x} bx = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (BX.is-fb bx)) B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx) ) } - PO-B : (z : ZChain A (& A) _<_ ) → PartialOrderSet (B z) _<_ - PO-B z a b = PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) } + PO-B : (z : ZChain A (& A) _<_ ) → IsPartialOrderSet (B z) _<_ + PO-B z = ? -- a b = {!!} -- PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) } bx-monotonic : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → obx z (is-elm x) o< obx z (is-elm y) → elm x < elm y bx-monotonic z {x} {y} a = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z (bx<A z (is-elm x)) (bx<A z (is-elm y)) a ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) @@ -147,13 +141,15 @@ {!!} ≡⟨ cong (λ k → {!!} ) {!!} ⟩ {!!} ≡⟨ {!!} ⟩ elm y ∎ where open ≡-Reasoning - B-is-total : (z : ZChain A (& A) _<_ ) → TotalOrderSet (B z) _<_ - B-is-total z x y with trio< (obx z (is-elm x)) (obx z (is-elm y)) - ... | tri< a ¬b ¬c = tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where + B-is-total : (z : ZChain A (& A) _<_ ) → IsTotalOrderSet (B z) _<_ + B-is-total = ? + B-Tri : (z : ZChain A (& A) _<_ ) → Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) + B-Tri z x y with trio< (obx z ?) (obx z ?) + ... | tri< a ¬b ¬c = ? where -- tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where z10 : elm x < elm y - z10 = bx-monotonic z {x} {y} a - ... | tri≈ ¬a b ¬c = tri≈ {!!} (bx-inject z {x} {y} b) {!!} - ... | tri> ¬a ¬b c = tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) + z10 = ? -- bx-monotonic z {x} {y} a + ... | tri≈ ¬a b ¬c = ? -- tri≈ {!!} (bx-inject z {x} {y} b) {!!} + ... | tri> ¬a ¬b c = ? -- tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A) @@ -223,7 +219,7 @@ MaximumSubset : {L P : HOD} → o∅ o< & L → o∅ o< & P → P ⊆ L - → PartialOrderSet P _⊆'_ - → ( (B : HOD) → B ⊆ P → TotalOrderSet B _⊆'_ → SUP P B _⊆'_ ) + → IsPartialOrderSet P _⊆'_ + → ( (B : HOD) → B ⊆ P → IsTotalOrderSet B _⊆'_ → SUP P B _⊆'_ ) → Maximal P (_⊆'_) MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP = Zorn-lemma {P} {_⊆'_} 0<P PO SP