Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1011:66154af40f89
IChain recursive record avoided
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 20 Nov 2022 17:44:21 +0900 |
parents | f80d525e6a6b |
children | 6f6daf464616 |
files | src/zorn.agda |
diffstat | 1 files changed, 8 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Nov 20 17:33:10 2022 +0900 +++ b/src/zorn.agda Sun Nov 20 17:44:21 2022 +0900 @@ -651,6 +651,12 @@ { supf : Ordinal → Ordinal } { x : Ordinal } → odef (UnionCF A f mf ay supf x) y init-uchain A f mf ay = ⟪ ay , ch-init (init ay refl) ⟫ +record IChain (A : HOD) ( f : Ordinal → Ordinal ) {x : Ordinal } (supfz : {z : Ordinal } → z o< x → Ordinal) (z : Ordinal ) : Set n where + field + i : Ordinal + i<x : i o< x + fc : FClosure A f (supfz i<x) z + Zorn-lemma : { A : HOD } → o∅ o< & A → ( ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → SUP A B ) -- SUP condition @@ -1307,15 +1313,9 @@ supfz : {z : Ordinal } → z o< x → Ordinal supfz {z} z<x = ZChain.supf (pzc (ob<x lim z<x)) z - record IChain (supfz : {z : Ordinal } → z o< x → Ordinal) (z : Ordinal ) : Set n where - field - i : Ordinal - i<x : i o< x - fc : FClosure A f (supfz i<x) z - pchainx : HOD - pchainx = record { od = record { def = λ z → IChain supfz z } ; odmax = & A ; <odmax = zc00 } where - zc00 : {z : Ordinal } → IChain supfz z → z o< & A + pchainx = record { od = record { def = λ z → IChain A f supfz z } ; odmax = & A ; <odmax = zc00 } where + zc00 : {z : Ordinal } → IChain A f supfz z → z o< & A zc00 {z} ic = z09 ( A∋fc (supfz (IChain.i<x ic)) f mf (IChain.fc ic) ) zeq : {xa xb z : Ordinal }