Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 462:667c54e6fa1f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 20 Mar 2022 16:29:03 +0900 |
parents | 0e018784bed3 |
children | 433866b43992 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 25 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Sun Mar 20 11:41:48 2022 +0900 +++ b/src/generic-filter.agda Sun Mar 20 16:29:03 2022 +0900 @@ -190,6 +190,11 @@ fd02 = dense-d D Lp0 fd04 : dense-f D Lp0 ⊆ P fd04 = ODC.power→⊆ O _ _ ( incl PP∋D fd02 ) + fd09 : (i : Nat ) → odef L (find-p L C i (& p0)) + fd09 Zero = Lp0 + fd09 (Suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) ) + ... | yes _ = fd09 i + ... | no _ = {!!} an : Nat an = ctl← C (& (dense D)) MD pn : Ordinal @@ -198,12 +203,25 @@ pn+1 = find-p L C (Suc an) (& p0) fd07 : odef (dense D) pn+1 fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) ) - ... | yes _ = {!!} - ... | no _ = {!!} - fd09 : (i : Nat ) → odef L (find-p L C i (& p0)) - fd09 Zero = Lp0 - fd09 (Suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) ) - ... | yes _ = fd09 i + ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 ⟪ fd13 , ⟪ fd14 , fd15 ⟫ ⟫ ) ) where + fd12 : L ∋ * (find-p L C an (& p0)) + fd12 = subst (λ k → odef L k) (sym &iso) (fd09 an ) + fd11 : Ordinal + fd11 = & ( dense-f D fd12 ) + fd13 : L ∋ ( dense-f D fd12 ) + fd13 = incl (d⊆P D) ( dense-d D fd12 ) + fd14 : (* (ctl→ C an)) ∋ ( dense-f D fd12 ) + fd14 = subst (λ k → odef k (& ( dense-f D fd12 ) )) fd16 ( dense-d D fd12 ) where + fd16 : dense D ≡ * (ctl→ C an) + fd16 = begin dense D ≡⟨ sym *iso ⟩ + * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→ C MD )) ⟩ + * (ctl→ C an) ∎ where open ≡-Reasoning + fd15 : (y : Ordinal) → odef (* (& (dense-f D fd12))) y → odef (* (find-p L C an (& p0))) y + fd15 y lt = subst (λ k → odef (* (find-p L C an (& p0))) k ) &iso ( incl (dense-p D fd12 ) fd16 ) where + fd16 : odef (dense-f D fd12) (& ( * y)) + fd16 = subst₂ (λ j k → odef j k ) (*iso) (sym &iso) lt + fd10 : PGHOD an L C (find-p L C an (& p0)) =h= od∅ + fd10 = ≡o∅→=od∅ y ... | no _ = {!!} fd03 : odef (PDHOD L p0 C) pn+1 fd03 = record { gr = Suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (Suc an)} @@ -229,7 +247,7 @@ -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } -- -record valR (x : HOD) {P L : HOD} {LP : L ⊆ Power P} (G : GenericFilter LP {!!} ) : Set (suc n) where +record valR (x : HOD) {P L : HOD} {LP : L ⊆ Power P} (C : CountableModel ) (G : GenericFilter LP (ctl-M C) ) : Set (suc n) where field valx : HOD @@ -246,10 +264,3 @@ ind : (x : Ordinal) → ((y : Ordinal) → y o< x → HOD) → HOD ind x valy = record { od = record { def = λ y → valS x y (& (filter (genf G))) } ; odmax = {!!} ; <odmax = {!!} } - --- --- W (ω , H ( ω , 2 )) = { p ∈ ( Nat → H (ω , 2) ) | { i ∈ Nat → p i ≠ i1 } is finite } --- - - -