Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 472:66a7d30d125a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 29 Mar 2022 11:47:24 +0900 |
parents | 2b048496cb21 |
children | d61f4a89c99e |
files | src/ODC.agda |
diffstat | 1 files changed, 29 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODC.agda Mon Mar 28 15:03:50 2022 +0900 +++ b/src/ODC.agda Tue Mar 29 11:47:24 2022 +0900 @@ -134,7 +134,7 @@ record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field maximal : HOD - A∋maximal : HOD + A∋maximal : A ∋ maximal ¬maximal<x : {x : HOD} → A ∋ x → ¬ maximal < x record ZChain ( A : HOD ) (y : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where @@ -144,7 +144,7 @@ total : TotalOrderSet B _<_ fb : {x : HOD } → A ∋ x → HOD B∋fb : (x : HOD ) → (ax : A ∋ x) → B ∋ fb ax - ¬x≤sup : (sup : HOD) → (as : A ∋ sup ) → & sup o< y → sup < fb as + ¬x≤sup : (sup : HOD) → (as : A ∋ sup ) → & sup o< osuc y → sup < fb as Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A @@ -153,15 +153,21 @@ → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B _<_ ) → Maximal A _<_ Zorn-lemma {A} {_<_} 0<A TR PO supP = zorn00 where + someA : HOD + someA = minimal A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) HasMaximal : HOD - HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A x ∧ odef A m ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } + HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A x ∧ odef A m ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = z07 } where + z07 : {y : Ordinal} → ((m : Ordinal) → odef A y ∧ odef A m ∧ (¬ (* y < * m))) → y o< & A + z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 (p (& someA)) ))) + Gtx : { x : HOD} → A ∋ x → HOD + Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) ∧ ( (& x) o< y ) } ; odmax = & A ; <odmax = {!!} } z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (ZChain.B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z (SUP.A∋maximal sp)) (ZChain.B∋fb z _ (SUP.A∋maximal sp)) (ZChain.¬x≤sup z _ (SUP.A∋maximal sp) z03 )) where - z03 : & (SUP.sup sp) o< & A - z03 = c<→o< (SUP.A∋maximal sp) + z03 : & (SUP.sup sp) o< osuc (& A) + z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc z02 : (x : HOD) → ZChain.B z ∋ x → SUP.sup sp < x → ⊥ z02 x xe s<x = ( z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x ) ind : HasMaximal =h= od∅ @@ -173,23 +179,19 @@ px = Oprev.oprev op zc1 : ZChain A px _<_ zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - z05 : SUP A (ZChain.B zc1) _<_ - z05 = supP (ZChain.B zc1) (ZChain.B⊆A zc1) (ZChain.total zc1) - z06 : (sup : HOD) (as : A ∋ sup) → & sup o< x → HOD - z06 sup as s<x with trio< (& sup) x - ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) ) - ... | tri> ¬a ¬b c = ⊥-elim (¬a s<x) - ... | tri< a ¬b ¬c with osuc-≡< (subst (λ k → (& sup) o< k ) (sym (Oprev.oprev=x op)) a ) - ... | case2 lt = ZChain.fb zc1 as - ... | case1 eq = {!!} - z04 : (sup : HOD) (as : A ∋ sup) → & sup o< x → sup < ZChain.fb zc1 as + z04 : (sup : HOD) (as : A ∋ sup) → & sup o< osuc x → sup < ZChain.fb zc1 as z04 sup as s<x with trio< (& sup) x ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) ) - ... | tri> ¬a ¬b c = ⊥-elim (¬a s<x) - ... | tri< a ¬b ¬c with osuc-≡< (subst (λ k → (& sup) o< k ) (sym (Oprev.oprev=x op)) a ) - ... | case2 lt = ZChain.¬x≤sup zc1 _ as lt - ... | case1 eq = ? - ... | yes Ax = {!!} + ... | tri< a ¬b ¬c = ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o< k ) (sym (Oprev.oprev=x op)) a ) + ... | tri> ¬a ¬b c with osuc-≡< s<x + ... | case1 eq = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans eq (sym &iso)) as) ) + ... | case2 lt = ⊥-elim (¬a lt ) + ... | yes Ax = {!!} where + px = Oprev.oprev op + zc1 : ZChain A px _<_ + zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) + z06 : SUP A (* x , * x) _<_ + z06 = supP (* x , * x) {!!} {!!} -- ... | no ¬Ax = record { B = B (prev B) ; B⊆A = {!!} ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } ind nomx x prev | no ¬ox with trio< (& A) x ... | tri< a ¬b ¬c = {!!} @@ -197,7 +199,13 @@ ... | tri> ¬a ¬b c = {!!} zorn00 : Maximal A _<_ zorn00 with is-o∅ ( & HasMaximal ) - ... | no not = record { maximal = minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = {!!}; ¬maximal<x = {!!} } + ... | no not = record { maximal = minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where + zorn03 : odef HasMaximal ( & ( minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ) ) + zorn03 = x∋minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) + zorn01 : A ∋ minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) + zorn01 = proj1 ( zorn03 (& someA) ) + zorn02 : {x : HOD} → A ∋ x → ¬ (minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) + zorn02 {x} ax m<x = proj2 (proj2 (zorn03 (& x))) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A) (≡o∅→=od∅ ¬Maximal)) ( supP B (ZChain.B⊆A (z (& A) (≡o∅→=od∅ ¬Maximal))) (ZChain.total (z (& A) (≡o∅→=od∅ ¬Maximal))) )) where z : (x : Ordinal) → HasMaximal =h= od∅ → ZChain A x _<_ z x nomx = TransFinite (ind nomx) x