changeset 1475:6752e2ff4dc6

ordinal (countable Ordinal) done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 28 Jun 2024 17:41:43 +0900
parents 893954e484a4
children 32001d93755b
files src/ODUtil.agda src/Ordinals.agda src/cardinal.agda src/ordinal.agda src/zorn.agda
diffstat 5 files changed, 258 insertions(+), 256 deletions(-) [+]
line wrap: on
line diff
--- a/src/ODUtil.agda	Sun Jun 23 09:32:40 2024 +0900
+++ b/src/ODUtil.agda	Fri Jun 28 17:41:43 2024 +0900
@@ -60,6 +60,8 @@
    p01 :  {z : HOD} → (x ∩ y) ∋ z → A ∋ z
    p01 {z} xyz = power→ A x ax (proj1 xyz )
 
+odef-not : {S : HOD} {x : Ordinal } →  ¬ ( odef S x ) → odef S x → ⊥
+odef-not neg sx = ⊥-elim ( neg sx )
 
 cseq :  HOD  →  HOD
 cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = lemma } where
--- a/src/Ordinals.agda	Sun Jun 23 09:32:40 2024 +0900
+++ b/src/Ordinals.agda	Fri Jun 28 17:41:43 2024 +0900
@@ -26,7 +26,7 @@
      <-osuc   : { x : ord  } → x o< osuc x
      osuc-≡<  : { a x : ord  } → x o< osuc a  →  (x ≡ a ) ∨ (x o< a)  
      Oprev-p  : ( x : ord  ) → Dec ( Oprev ord osuc x )
-     o<-irr   : { x y : ord } → { lt lt1 : x o< y } → lt ≡ lt1
+     -- o<-irr   : { x y : ord } → { lt lt1 : x o< y } → lt ≡ lt1
      TransFinite : { ψ : ord  → Set (suc n) }
           → ( (x : ord)  → ( (y : ord  ) → y o< x → ψ y ) → ψ x )
           →  ∀ (x : ord)  → ψ x
--- a/src/cardinal.agda	Sun Jun 23 09:32:40 2024 +0900
+++ b/src/cardinal.agda	Fri Jun 28 17:41:43 2024 +0900
@@ -443,26 +443,27 @@
      f1 = record { i→ = λ x → & (* x , * x) ; iB = c00 ;  inject = c02 }where
          c02 : (x y : Ordinal) (ltx : odef (* (& S)) x) (lty : odef (* (& S)) y) →
             & (* x , * x) ≡ & (* y , * y) → x ≡ y
-         c02 x y ltx lty eq = ? where -- subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (xx=zy→x=y c03 )) where
+         c02 x y ltx lty eq = subst₂ (λ j k → j ≡ k ) &iso &iso (==→o≡ (xx=zy→x=y c03 )) where
              c03 : (* x , * x) =h= (* y , * y)
              c03 = ord→== eq
          c00 : (x : Ordinal) (lt : odef (* (& S)) x) → odef (* (& (Power S))) (& (* x , * x))
-         c00 x lt = ? where -- subst₂ (λ j k → odef j (& k) ) (sym *iso) refl (λ y z → c01 y (subst (λ k → odef k y ) *iso z  )) where
+         c00 x lt  = eq← *iso (λ y lt → c01 y (eq→ *iso lt) ) where
              c01 : (y : Ordinal ) → odef (* x , * x ) y  → odef S y
-             c01 y (case1 eq) = ? --- subst₂ (λ j k  → odef j k ) *iso (trans (sym &iso) (sym eq) ) lt
-             c01 y (case2 eq) = ? -- subst₂ (λ j k  → odef j k ) *iso (trans (sym &iso) (sym eq) ) lt
+             c01 y (case1 eq) = eq→ *iso (subst (λ k  → odef (* (& S)) k ) (trans (sym &iso) (sym eq) ) lt)
+             c01 y (case2 eq) = eq→ *iso (subst (λ k  → odef (* (& S)) k ) (trans (sym &iso) (sym eq) ) lt)
      f2 : Injection (& (Power S)) (& S) 
      f2 = f
      -- postulate   -- yes we have a proof but it is very slow
      b : HODBijection (Power S) S 
-     b = ? -- subst₂ (λ j k → HODBijection j k) ? ? ( Bernstein f2 f1)   -- this makes check very slow
+     b = proj1 (==-bi (proj2 (==-bi ( Bernstein f2 f1) ) *iso ) ) *iso
+     -- -- subst₂ (λ j k → HODBijection j k) ? ? ( Bernstein f2 f1)   -- this makes check very slow
      --      but postulate makes check weak eg. irrerevance of ∋ 
 
      -- we have at least one element since Power S contains od∅
      --
 
      p0 : odef (Power S) o∅
-     p0 z xz = ? -- ⊥-elim (¬x<0 (subst (λ k → odef k z) o∅≡od∅ xz)  )
+     p0 = Power∋∅  {S}
 
      s : Ordinal 
      s = fun→ b o∅ p0
@@ -483,21 +484,43 @@
          ; odmax = & S ; <odmax = odef∧< } 
 
      diag3 : odef (Power S) (& Diag)
-     diag3 z xz = ? -- with subst (λ k → odef k z) *iso xz
-     -- ... | ⟪ sx , eq ⟫ = sx
+     diag3 z xz with eq→ *iso xz
+     ... | ⟪ sx , eq ⟫ = sx
 
      not-isD : (x : Ordinal) → (sn : odef S x)  → not (  is-S (* (fun← b x sn )) x ) ≡ is-S Diag x
      not-isD x sn with  p∨¬p (odef (* (fun← b x sn )) x)  | p∨¬p (odef Diag x) | (is-S (* (fun← b x sn ))) x in eq1
-     ... | case1 lt | case1 ⟪ sx , eq ⟫ | _ = ? -- ⊥-elim (¬t=f false (trans (sym eq1) (eq sn )) )
-     ... | case1 lt | case2 lt1 | _ = ?
-     ... | case2 lt | case1 lt1 | _ = ? -- refl
-     ... | case2 lt | case2 neg | _ = ? --⊥-elim ( neg ⟪ sn , (λ sx → trans (cong diag ( HE.≅-to-≡ ( ∋-irr {S} sx sn ))) eq1 ) ⟫ )
+     ... | case1 lt | case1 ⟪ sx , eq ⟫ | true  =  ⊥-elim ( ¬-bool {diag sx} ni00 ni01)  where
+           ni00 : diag sx ≡ false
+           ni00 = eq sx
+           ni01 : diag sx ≡ true
+           ni01 with p∨¬p (odef (* (fun← b x sx)) x)
+           ... | case1 eq1 = refl
+           ... | case2 ne = ⊥-elim (ne (subst (λ k → odef (* k) x) ni02 lt) ) where
+              ni02 : fun← b x sn ≡ fun← b x sx
+              ni02 = fcong← b _ _ sn sx refl
+     ... | case1 lt | case2 lt1 | p1 = subst (λ k → not k ≡ false ) eq1 refl
+     ... | case2 lt | case1 lt1 | p1 = subst (λ k → not k ≡ true ) eq1 refl
+     ... | case2 lt | case2 neg | false = ⊥-elim (neg ⟪ sn , (λ sx → ni00 sx ) ⟫) where
+           ni00 : (sx : odef S x ) → diag sx ≡ false
+           ni00 sx with p∨¬p (odef (* (fun← b x sx)) x)
+           ... | case1 dx = ⊥-elim ( lt (subst (λ k → odef (* k) x) ni02 dx) ) where
+              ni03 : odef (* (fun← b x sx)) x
+              ni03 = dx
+              ni02 : fun← b x sx ≡ fun← b x sn
+              ni02 = sym (fcong← b _ _ sn sx refl)
+           ... | case2 ndx = refl
 
+     is-S-congS : (S S1 : HOD ) → (x : Ordinal) → S =h= S1 →  is-S S x ≡ is-S S1 x
+     is-S-congS S S1 x eq with p∨¬p (odef S x) | p∨¬p (odef S1 x)
+     ... | case1 sx | case1 sx1 = refl
+     ... | case2 sx | case2 sx1 = refl
+     ... | case1 sx | case2 sx1 = ⊥-elim ( sx1 (eq→ eq sx) )
+     ... | case2 sx | case1 sx1 = ⊥-elim ( sx (eq← eq sx1) )
 
      diagn1 : (n : Ordinal ) → odef S n → ¬ (fun→ b (& Diag) diag3 ≡ n)
      diagn1 n sn dn = ¬t=f (is-S Diag n) (begin
           not (is-S Diag n)
-        ≡⟨ cong (λ k → not (is-S k n)) (sym ? ) ⟩
+        ≡⟨ cong (λ k → not k) (is-S-congS Diag (* (& Diag)) _ (==-sym *iso) ) ⟩
           not (is-S (* (& Diag)) n)
         ≡⟨ cong (λ k → not (is-S (* k) n)) (sym (fiso← b (& Diag) diag3 )) ⟩
           not (  is-S (* (fun← b (fun→ b (& Diag) diag3) (funB b (& Diag) diag3 ))) n ) 
@@ -512,21 +535,36 @@
      diag4 = diagn1  (fun→ b (& Diag) diag3) (funB b (& Diag) diag3) refl
  
 c<¬= : { u s : HOD } →  u c< s → ¬ ( u =c=  s )
-c<¬= {u} {s} c<u ceq = c<u record { i→ = λ x  → fun← ceq x (subst (λ k → odef k x) ? ?) 
-     ; iB = λ x lt → subst₂ (λ j k → odef j k) (sym ?) refl (funA ceq x (subst (λ k → odef k x) ? lt))  
-     ; inject = c04 } where
-         c04 :  (x y : Ordinal) (ltx : odef (* (& (s))) x) (lty : odef (* (& (s))) y) 
-            → fun← ceq x (subst (λ k → odef k x) ? ltx) ≡ fun← ceq y (subst (λ k → odef k y) ? lty) → x ≡ y
-         c04 x y ltx lty eq = begin
-           x ≡⟨ sym ( fiso→ ceq x c05 ) ⟩
-           fun→ ceq ( fun← ceq x c05 ) (funA ceq x c05)  ≡⟨ fun←cong (hodbij-sym ceq) eq ⟩
-           fun→ ceq ( fun← ceq y c06 ) (funA ceq y c06)  ≡⟨ fiso→ ceq y c06 ⟩
-           y ∎ where 
-             open ≡-Reasoning
-             c05 : odef (s) x
-             c05 = subst (λ k → odef k x) ? ltx
-             c06 : odef (s) y
-             c06 = subst (λ k → odef k y) ? lty
+c<¬= {u} {s} c<u ceq = c<u record { i→ = λ x  → cf x
+     ; iB = c00
+     ; inject = c01 } where
+         cf : (x : Ordinal ) → Ordinal
+         cf x with p∨¬p (odef s x)
+         ... | case1 sx = fun← ceq x sx 
+         ... | case2 nsx = o∅
+         c00 : (x : Ordinal) → odef (* (& s)) x → odef (* (& u)) (cf x)
+         c00 x sx  with p∨¬p (odef s x)
+         ... | case1 sx = eq← *iso (funA ceq x sx )
+         ... | case2 nsx = ⊥-elim (nsx (eq→ *iso sx))
+         c01 : (x y : Ordinal) → odef (* (& s)) x → odef (* (& s)) y → cf x ≡ cf y → x ≡ y
+         c01 x y ssx ssy cfeq with p∨¬p (odef s x) | p∨¬p (odef s y)
+         ... | case2 nsx | case1 sy = ⊥-elim (nsx (eq→ *iso ssx))
+         ... | case1 sx | case2 nsy = ⊥-elim (nsy (eq→ *iso ssy))
+         ... | case2 nsx | case2 nsy = ⊥-elim (nsx (eq→ *iso ssx))
+         ... | case1 sx | case1 sy = begin
+                x ≡⟨ sym ( fiso→ ceq x c05 ) ⟩
+                fun→ ceq ( fun← ceq x c05 ) (funA ceq x c05)  ≡⟨ fcong→  ceq _ _ (funA ceq _ c05 ) (funA ceq _ c06 ) ( begin
+                   fun← ceq x c05 ≡⟨ fcong← ceq x x c05 sx refl ⟩
+                   fun← ceq x sx ≡⟨ cfeq ⟩
+                   fun← ceq y sy ≡⟨ fcong← ceq y y sy c06 refl ⟩
+                   fun← ceq y c06  ∎ ) ⟩
+                fun→ ceq ( fun← ceq y c06 ) (funA ceq y c06)  ≡⟨ fiso→ ceq y c06 ⟩
+                y ∎ where 
+                  open ≡-Reasoning
+                  c05 : odef s x
+                  c05 = eq→ *iso ssx
+                  c06 : odef s y
+                  c06 = eq→ *iso ssy
 
 Cantor2 : (u : HOD) → ¬ ( u =c=  Power u )
 Cantor2 u =  c<¬= (Cantor1 u )
--- a/src/ordinal.agda	Sun Jun 23 09:32:40 2024 +0900
+++ b/src/ordinal.agda	Fri Jun 28 17:41:43 2024 +0900
@@ -1,9 +1,11 @@
-open import Level 
+{-# OPTIONS --cubical-compatible --safe #-}
+
+open import Level renaming ( zero to Zero ; suc to Suc ; _⊔_ to _n⊔_ )
 module ordinal where
 
 open import logic
 open import nat
-open import Data.Nat renaming ( zero to Zero ; suc to Suc ; _⊔_ to _n⊔_ ) 
+open import Data.Nat
 open import Data.Empty
 open import Relation.Binary.PropositionalEquality
 open import Relation.Binary.Definitions
@@ -16,281 +18,241 @@
 -- Countable Ordinals
 --
 
-data OrdinalD {n : Level} :  (lv : ℕ) → Set n where
-   Φ : (lv : ℕ) → OrdinalD  lv
-   OSuc : (lv : ℕ) → OrdinalD {n} lv → OrdinalD lv
-
-record Ordinal {n : Level} : Set n where
-   constructor ordinal  
+record Ordinal : Set where
+   constructor ordinal
    field
      lv : ℕ
-     ord : OrdinalD {n} lv
-
-data _d<_ {n : Level} :   {lx ly : ℕ} → OrdinalD {n} lx  →  OrdinalD {n} ly  → Set n where
-   Φ<  : {lx : ℕ} → {x : OrdinalD {n} lx}  →  Φ lx d< OSuc lx x
-   s<  : {lx : ℕ} → {x y : OrdinalD {n} lx}  →  x d< y  → OSuc  lx x d< OSuc  lx y
+     ord : ℕ
 
 open Ordinal
-
-_o<_ : {n : Level} ( x y : Ordinal ) → Set n
-_o<_ x y =  (lv x < lv y )  ∨ ( ord x d< ord y )
+open  _∧_
 
-s<refl : {n : Level } {lx : ℕ } { x : OrdinalD {n} lx } → x d< OSuc lx x
-s<refl {n} {lv} {Φ lv}  = Φ<
-s<refl {n} {lv} {OSuc lv x}  = s< s<refl 
+o∅ :  Ordinal
+o∅  = record { lv = zero ; ord = zero }
 
-trio<> : {n : Level} →  {lx : ℕ} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  →  y d< x → x d< y → ⊥
-trio<>  {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t
-trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< ()
+osuc : ( x : Ordinal ) → Ordinal
+osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = suc ox }
 
-d<→lv : {n : Level} {x y  : Ordinal {n}}   → ord x d< ord y → lv x ≡ lv y
-d<→lv Φ< = refl
-d<→lv (s< lt) = refl
-
-o∅ : {n : Level} → Ordinal {n}
-o∅  = record { lv = Zero ; ord = Φ Zero }
-
--- open import Relation.Binary.HeterogeneousEquality using (_≅_;refl)
+_o<_ : Ordinal  → Ordinal → Set
+_o<_ x y =  (lv x < lv y) ∨  ((lv x ≡ lv y) ∧ (ord x < ord y))
 
--- ordinal-cong : {n : Level} {x y : Ordinal {n}}  →
---       lv x  ≡ lv y → ord x ≅ ord y →  x ≡ y
--- ordinal-cong refl refl = refl
-
-≡→¬d< : {n : Level} →  {lv : ℕ} → {x  : OrdinalD {n}  lv }  → x d< x → ⊥
-≡→¬d<  {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t
-
-trio<≡ : {n : Level} →  {lx : ℕ} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → x d< y → ⊥
-trio<≡ refl = ≡→¬d<
+<-osuc : { x : Ordinal  } → x o< osuc x
+<-osuc {x} = case2 ⟪ refl , a<sa ⟫
 
-trio>≡ : {n : Level} →  {lx : ℕ} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → y d< x → ⊥
-trio>≡ refl = ≡→¬d<
+o<¬≡ : { ox oy : Ordinal } → ox ≡ oy  → ox o< oy  → ⊥
+o<¬≡ {ox} {.ox} refl (case1 lt) = ⊥-elim ( nat-<≡  lt )
+o<¬≡ {ox} {.ox} refl (case2 x) = ⊥-elim ( nat-<≡  (proj2 x) )
 
-triOrdd : {n : Level} →  {lx : ℕ}   → Trichotomous  _≡_ ( _d<_  {n} {lx} {lx} )
-triOrdd  {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d<
-triOrdd  {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< )
-triOrdd  {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ<
-triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y
-triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) )  (  λ lt → trio<> lt (s< a) )
-triOrdd  {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d<
-triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> (  λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c)
+¬x<0 : { x  : Ordinal } → ¬ ( x o< o∅  )
+¬x<0 {x} (case1 ())
+¬x<0 {x} (case2 ())
 
-osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n}
-osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox }
-
-<-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x
-<-osuc {n} {record { lv = lx ; ord = Φ .lx }} =  case2 Φ<
-<-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl )
-
-o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy  → ox o< oy  → ⊥
-o<¬≡ {_} {ox} {ox} refl (case1 lt) =  =→¬< lt
-o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt
-
-¬x<0 : {n : Level} →  { x  : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} )
-¬x<0 {n} {x} (case1 ())
-¬x<0 {n} {x} (case2 ())
-
-o<> : {n : Level} →  {x y : Ordinal {n}  }  →  y o< x → x o< y → ⊥
-o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<>  x₁ x₂
-o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁
-o<> {n} {x} {y} (case2 x₁) (case1 x₂) = nat-≡< (sym (d<→lv x₁)) x₂
-o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) (case2 ())
-o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y<x)) (case2 (s< x<y)) = 
-   o<> (case2 y<x) (case2 x<y)
+trio< :  Trichotomous  _≡_  _o<_
+trio< a b with <-cmp (lv a) (lv b)
+... | tri< a₁ ¬b ¬c = tri<  (case1 a₁)  (λ eq → ¬b (cong lv eq) )  tr00 where
+   tr00 : ¬ (suc (lv b) ≤ lv a) ∨ ((lv b ≡ lv a) ∧ (suc (ord b) ≤ ord a))
+   tr00 (case1 x) = ¬c x
+   tr00 (case2 x) = ¬b (sym (proj1 x))
+... | tri> ¬a ¬b c = tri>  tr00 (λ eq → ¬b (cong lv eq) ) (case1 c)  where
+   tr00 : ¬ (suc (lv a) ≤ lv b) ∨ ((lv a ≡ lv b) ∧ (suc (ord a) ≤ ord b))
+   tr00 (case1 x) = ¬a x
+   tr00 (case2 x) = ¬b ((proj1 x))
+... | tri≈ ¬a refl ¬c with <-cmp (ord a) (ord b)
+... | tri< a₁ ¬b ¬c₁ = tri<  (case2 ⟪ refl , a₁ ⟫)  (λ eq → ¬b (cong ord eq) )  tr00 where
+   tr00 : ¬ (suc (lv b) ≤ lv b) ∨ ((lv b ≡ lv b) ∧ (suc (ord b) ≤ (ord a) ))
+   tr00 (case1 x) = ⊥-elim ( ¬a≤a {lv b} x )
+   tr00 (case2 ⟪ eq , lt ⟫) = nat-<> lt a₁
+... | tri≈ ¬a₁ refl ¬c₁ = tri≈  tr00 refl tr01  where
+   tr00 :  ¬ (suc (lv b) ≤ lv b) ∨ ((lv b ≡ lv b) ∧ (suc (ord b) ≤ ord b))
+   tr00 (case1 x) = ¬a x
+   tr00 (case2 x) = ¬a₁ (proj2 x)
+   tr01 : ¬ (suc (lv b) ≤ lv b) ∨ ((lv b ≡ lv b) ∧ (suc (ord b) ≤ ord b))
+   tr01 (case1 x) = ¬c x
+   tr01 (case2 x) = ¬c₁ (proj2 x)
+... | tri> ¬a₁ ¬b c = tri>  tr00 (λ eq → ¬b (cong ord eq) ) (case2 ⟪ refl , c ⟫ )  where
+   tr00 : ¬ (suc (lv a) ≤ lv b) ∨ ((lv a ≡ lv b) ∧ (suc (ord a) ≤ ord b))
+   tr00 (case1 x) = ¬c x
+   tr00 (case2 x) = ¬a₁ (proj2 x)
 
-orddtrans : {n : Level} {lx : ℕ} {x y z : OrdinalD {n}  lx }   → x d< y → y d< z → x d< z
-orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< 
-orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z )
+ordtrans : {x y z : Ordinal  }   → x o< y → y o< z → x o< z
+ordtrans {x} {y} {z} (case1 x₁) (case1 x₂) = case1 (<-trans x₁ x₂)
+ordtrans {x} {y} {z} (case1 x₁) (case2 x₂) = case1 ( subst (λ k → lv x < k ) (proj1 x₂) x₁ )
+ordtrans {x} {y} {z} (case2 x₁) (case1 x₂) = case1 ( subst (λ k → k < lv z ) (sym (proj1 x₁)) x₂ )
+ordtrans {x} {y} {z} (case2 x₁) (case2 x₂) = case2 ⟪ trans (proj1 x₁) (proj1 x₂) , <-trans (proj2 x₁) (proj2 x₂) ⟫
 
-osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a  →  (x ≡ a ) ∨ (x o< a)  
-osuc-≡< {n} {a} {x} (case1 lt) = case2 (case1 lt)
-osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case1 refl
-osuc-≡< {n} {record { lv = lv₁ ; ord = OSuc .lv₁ ord₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case2 (case2 Φ<)
-osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< ()))
-osuc-≡< {n} {record { lv = la ; ord = OSuc la oa }} {record { lv = la ; ord = (OSuc la ox) }} (case2 (s< lt)) with
-      osuc-≡< {n} {record { lv = la ; ord = oa }} {record { lv = la ; ord = ox }} (case2 lt )
-... | case1 refl = case1 refl
-... | case2 (case2 x) = case2 (case2( s< x) )
-... | case2 (case1 x) = ⊥-elim (¬a≤a  x) 
+o<> : {x y : Ordinal  }  →  y o< x → x o< y → ⊥
+o<> {x} {y} y<x x<y with trio< x y
+... | tri< a ¬b ¬c = ⊥-elim ( ¬c y<x )
+... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c y<x )
+... | tri> ¬a ¬b c = ⊥-elim ( ¬a x<y )
 
-osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x  → x o< y → ⊥
-osuc-< {n} {x} {y} y<ox x<y with osuc-≡< y<ox
-osuc-< {n} {x} {x} y<ox (case1 x₁) | case1 refl = ⊥-elim (¬a≤a x₁)
-osuc-< {n} {x} {x} (case1 x₂) (case2 x₁) | case1 refl = ⊥-elim (¬a≤a x₂)
-osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d<  x₁
-osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁
-osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂
-osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x
+osuc-≡< : { a x : Ordinal  } → x o< osuc a  →  (x ≡ a ) ∨ (x o< a)
+osuc-≡< {a} {x} (case1 x₁) = case2 (case1 x₁)
+osuc-≡< {a} {x} (case2 ⟪ eq , lt ⟫) with <-cmp (ord x) (ord a)
+... | tri< a₁ ¬b ¬c = case2 (case2 ⟪ eq , a₁ ⟫)
+osuc-≡< {a} {ordinal .(lv a) .(ord a)} (case2 ⟪ refl , lt ⟫) | tri≈ ¬a refl ¬c = case1 refl
+... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c lt )
 
 
-ordtrans : {n : Level} {x y z : Ordinal {n} }   → x o< y → y o< z → x o< z
-ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
-ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with  d<→lv x₂
-... | refl = case1 x₁
-ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂)  with  d<→lv x₁
-... | refl = case1 x₂
-ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
-... | refl | refl = case2 ( orddtrans x₁ x₂ )
+-- we don't use this
+OrdIrr :  {x y : Ordinal  } (lt lt1 : x o< y) → lt ≡ lt1
+OrdIrr {x} {y} (case1 x₁) (case1 x₂) = cong case1 (<-irrelevant _ _)
+OrdIrr {x} {y} (case1 x₁) (case2 x₂) = ⊥-elim ( nat-≡< (proj1 x₂) x₁  )
+OrdIrr {x} {y} (case2 x₁) (case1 x₂) = ⊥-elim ( nat-≡< (proj1 x₁) x₂  )
+OrdIrr {x} {y} (case2 x₁) (case2 x₂) with (≡-irrelevant (proj1 x₁) (proj1 x₂)) | (<-irrelevant (proj2 x₁) (proj2 x₂))
+... | refl | refl = refl
 
-trio< : {n : Level } → Trichotomous {suc n} _≡_  _o<_ 
-trio< a b with <-cmp (lv a) (lv b)
-trio< a b | tri< a₁ ¬b ¬c = tri< (case1  a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
-   lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
-   lemma1 (case1 x) = ¬c x
-   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) a₁  )
-trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where
-   lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b)
-   lemma1 (case1 x) = ¬a x
-   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) c  )
-trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b )
-trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where
-   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
-   lemma1 refl = refl
-   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x)
-   lemma2 (case1 x) = ¬a x
-   lemma2 (case2 x) = trio<> x a
-trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where
-   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
-   lemma1 refl = refl
-   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b)
-   lemma2 (case1 x) = ¬a x
-   lemma2 (case2 x) = trio<> x c
-trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where
-   lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b)
-   lemma1 (case1 x) = ¬a x
-   lemma1 (case2 x) = ≡→¬d< x
-
-
-open _∧_
-
-TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m }
-  → ( ∀ (lx : ℕ ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx)  → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) )
-  → ( ∀ (lx : ℕ ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x)  → ψ y )   → ψ ( record { lv = lx ; ord = OSuc lx x } ) )
+TransFinite : {m : Level} → { ψ : Ordinal  → Set m }
+  → ( (x : Ordinal)  → ( (y : Ordinal  ) → y o< x → ψ y ) → ψ x )
   →  ∀ (x : Ordinal)  → ψ x
-TransFinite {n} {m} {ψ} caseΦ caseOSuc x = proj1 (TransFinite1 (lv x) (ord x) ) where
-  TransFinite1 : (lx : ℕ) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx ox  → ψ x ) )
-  TransFinite1 Zero (Φ 0) = ⟪  caseΦ Zero lemma , lemma1 ⟫ where
-      lemma : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
+TransFinite  {m} {ψ} ind x = proj1 (TransFinite1 (lv x) (ord x) ) where
+  caseΦ : (lx : ℕ) → ((x₁ : Ordinal) → x₁ o< ordinal lx zero → ψ x₁) →
+        ψ (record { lv = lx ; ord = zero })
+  caseΦ lx prev = ind (ordinal lx zero ) prev
+  caseOSuc :  (lx : ℕ) (x₁ : ℕ) → ((y : Ordinal) → y o< ordinal lx (suc x₁) → ψ y) →
+        ψ (record { lv = lx ; ord = suc x₁ })
+  caseOSuc lx ox prev = ind (ordinal lx (suc ox)) prev 
+  TransFinite1 : (lx : ℕ) (ox : ℕ ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal  ) → x o< ordinal lx ox  → ψ x ) )
+  TransFinite1 zero zero = ⟪  caseΦ zero lemma , lemma1 ⟫ where
+      lemma : (x : Ordinal) → x o< ordinal zero zero → ψ x
       lemma x (case1 ())
       lemma x (case2 ())
-      lemma1 : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
+      lemma1 : (x : Ordinal) → x o< ordinal zero zero → ψ x
       lemma1 x (case1 ())
       lemma1 x (case2 ())
-  TransFinite1 (Suc lx) (Φ (Suc lx)) = ⟪ caseΦ (Suc lx) (λ x → lemma (lv x) (ord x)) , (λ x → lemma (lv x) (ord x)) ⟫ where
-      lemma0 : (ly : ℕ) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal lx (Φ lx) → ψ (ordinal ly oy)
-      lemma0 ly oy lt = proj2 ( TransFinite1 lx (Φ lx) ) (ordinal ly oy) lt
-      lemma : (ly : ℕ) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal (Suc lx) (Φ (Suc lx)) → ψ (ordinal ly oy)
-      lemma lx1 ox1            (case1 lt) with <-∨ lt
-      lemma lx (Φ lx)          (case1 lt) | case1 refl = proj1 ( TransFinite1 lx (Φ lx) )
-      lemma lx (Φ lx)          (case1 lt) | case2 lt1 = lemma0  lx (Φ lx) (case1 lt1)
-      lemma lx (OSuc lx ox1)   (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
-          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx ox1) → ψ y
+  TransFinite1 (suc lx) zero = ⟪ caseΦ (suc lx) (λ x → lemma (lv x) (ord x)) , (λ x → lemma (lv x) (ord x)) ⟫ where
+      lemma0 : (ly : ℕ) (oy : ℕ ) → ordinal ly oy  o< ordinal lx zero → ψ (ordinal ly oy)
+      lemma0 ly oy lt = proj2 ( TransFinite1 lx zero ) (ordinal ly oy) lt
+      lemma : (ly : ℕ) (oy : ℕ ) → ordinal ly oy  o< ordinal (suc lx) zero → ψ (ordinal ly oy)
+      lemma lx1 ox1   (case1 lt) with <-∨ lt
+      lemma lx zero   (case1 lt) | case1 refl = proj1 ( TransFinite1 lx zero )
+      lemma lx zero   (case1 lt) | case2 lt1 = lemma0  lx zero (case1 lt1)
+      lemma lx (suc ox1)   (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (suc (lv y) ≤ lx) ∨ ((lv y ≡ lx) ∧ (suc (ord y) ≤ suc ox1)) → ψ y
           lemma2 y lt1 with osuc-≡< lt1
-          lemma2 y lt1 | case1 refl = lemma lx ox1 (case1 a<sa)
-          lemma2 y lt1 | case2 t = proj2 (TransFinite1 lx ox1) y t 
-      lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
-          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx1) ∨ (ord y d< OSuc lx1 ox1) → ψ y
+          ... | case1 refl = lemma lx ox1 (case1 a<sa)
+          ... | case2 lt2 = proj2 (TransFinite1 lx ox1) y lt2
+      lemma lx1 (suc ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (suc (lv y) ≤ lx1) ∨ ((lv y ≡ lx1) ∧ (suc (ord y) ≤ suc ox1)) → ψ y
           lemma2 y lt2 with osuc-≡< lt2
-          lemma2 y lt2 | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
-          lemma2 y lt2 | case2 (case1 lt3) = proj2 (TransFinite1 lx (Φ lx)) y (case1 (<-trans lt3 lt1 ))
-          lemma2 y lt2 | case2 (case2 lt3) with d<→lv lt3
-          ... | refl = proj2 (TransFinite1 lx (Φ lx)) y (case1 lt1)
-  TransFinite1 lx (OSuc lx ox)  = ⟪ caseOSuc lx ox lemma , lemma ⟫ where
-      lemma : (y : Ordinal) → y o< ordinal lx (OSuc lx ox) → ψ y
+          ... | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
+          ... | case2 (case1 lt3) = proj2 (TransFinite1 lx zero) y (case1 (<-trans lt3 lt1 ))
+          ... | case2 (case2 lt3) = proj2 (TransFinite1 lx zero) y (case1 lemma3) where
+              lemma3 : lv y < lx
+              lemma3 = begin
+                 suc (lv y) ≡⟨ cong suc (proj1 lt3) ⟩
+                 suc lx1 ≤⟨ lt1 ⟩
+                 lx ∎ where open ≤-Reasoning
+  TransFinite1 lx (suc ox)  = ⟪ caseOSuc lx ox lemma , lemma ⟫ where
+      lemma : (y : Ordinal) → y o< ordinal lx (suc ox) → ψ y
       lemma y lt with osuc-≡< lt
-      lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) 
+      lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox )
       lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1
 
-OrdIrr : {n : Level } {x y : Ordinal {suc n} } {lt lt1 : x o< y} → lt ≡ lt1
-OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case1 x} {case1 x₁} = cong case1 (NP.<-irrelevant _ _ )
-OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case1 x} {case2 x₁} = ⊥-elim ( nat-≡< ( d<→lv x₁ ) x )
-OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case2 x} {case1 x₁} = ⊥-elim ( nat-≡< ( d<→lv x ) x₁ )
-OrdIrr {n} {ordinal lv₁ .(Φ lv₁)} {ordinal .lv₁ .(OSuc lv₁ _)} {case2 Φ<} {case2 Φ<} = refl
-OrdIrr {n} {ordinal lv₁ (OSuc lv₁ a)} {ordinal .lv₁ (OSuc lv₁ b)} {case2 (s< x)} {case2 (s< x₁)} = cong (λ k → case2 (s< k)) (lemma1 _ _ x x₁) where
-      lemma1 : {lx : ℕ} (a b : OrdinalD {suc n} lx) → (x y : a d< b ) → x ≡ y
-      lemma1 {lx} .(Φ lx) .(OSuc lx _) Φ< Φ< = refl
-      lemma1 {lx} (OSuc lx a) (OSuc lx b) (s< x) (s< y) = cong s< (lemma1 {lx} a b x y )
+
+open import Induction.WellFounded
+
+-- The accessibility predicate: x is accessible if everything which is
+-- smaller than x is also accessible (inductively).
+--
+-- data Acc {A : Set a} (_<_ : Rel A ℓ) (x : A) : Set (a ⊔ ℓ) where
+--   acc : (rs : (y : A ) → y < x → Acc _<_ x) → Acc _<_ x
+
+
+ordWF : WellFounded _o<_
+ordWF x = TransFinite {Zero} {λ y → Acc _o<_ y} (λ x ind → acc (λ x rs → ind x rs  ) )  x
 
-TransFinite3 : {n m : Level} { ψ : Ordinal {suc n} → Set m }
-          → ( (x : Ordinal {suc n})  → ( (y : Ordinal {suc n}  ) → y o< x → ψ y ) → ψ x )
-          →  ∀ (x : Ordinal {suc n} )  → ψ x
-TransFinite3 {n} {m} {ψ} ind x = TransFinite {n} {m} {ψ} caseΦ caseOSuc x where
-        caseΦ : (lx : ℕ) → ((x₁ : Ordinal {suc n}) → x₁ o< ordinal lx (Φ lx) → ψ x₁) →
-            ψ (record { lv = lx ; ord = Φ lx })
-        caseΦ lx prev = ind (ordinal lx (Φ lx) ) prev
-        caseOSuc :  (lx : ℕ) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) →
-            ψ (record { lv = lx ; ord = OSuc lx x₁ })
-        caseOSuc lx ox prev = ind (ordinal lx (OSuc lx ox)) prev 
+TransFiniteWF : {m : Level} 
+  → ( (x : Ordinal)  → ( (y : Ordinal  ) → y o< x → Acc _o<_ y ) → Acc _o<_ x )
+  →  ∀ (x : Ordinal)  → Acc _o<_ x
+TransFiniteWF  {m} ind x = proj1 (TransFinite1 (lv x) (ord x) ) where
+  caseΦ : (lx : ℕ) → ((x₁ : Ordinal) → x₁ o< ordinal lx zero → Acc _o<_ x₁) →
+        Acc _o<_ (record { lv = lx ; ord = zero })
+  caseΦ lx prev = ind (ordinal lx zero ) prev
+  caseOSuc :  (lx : ℕ) (x₁ : ℕ) → ((y : Ordinal) → y o< ordinal lx (suc x₁) → Acc _o<_ y) →
+        Acc _o<_ (record { lv = lx ; ord = suc x₁ })
+  caseOSuc lx ox prev = ind (ordinal lx (suc ox)) prev 
+  TransFinite1 : (lx : ℕ) (ox : ℕ ) → Acc _o<_ (ordinal lx ox) ∧ ( ( (x : Ordinal  ) → x o< ordinal lx ox  → Acc _o<_ x ) )
+  TransFinite1 zero zero = ⟪  caseΦ zero lemma , lemma1 ⟫ where
+      lemma : (x : Ordinal) → x o< ordinal zero zero → Acc _o<_ x
+      lemma x (case1 ())
+      lemma x (case2 ())
+      lemma1 : (x : Ordinal) → x o< ordinal zero zero → Acc _o<_ x
+      lemma1 x (case1 ())
+      lemma1 x (case2 ())
+  TransFinite1 (suc lx) zero = ⟪ caseΦ (suc lx) (λ x → lemma (lv x) (ord x)) , (λ x → lemma (lv x) (ord x)) ⟫ where
+      lemma0 : (ly : ℕ) (oy : ℕ ) → ordinal ly oy  o< ordinal lx zero → Acc _o<_ (ordinal ly oy)
+      lemma0 ly oy lt = proj2 ( TransFinite1 lx zero ) (ordinal ly oy) lt
+      lemma : (ly : ℕ) (oy : ℕ ) → ordinal ly oy  o< ordinal (suc lx) zero → Acc _o<_ (ordinal ly oy)
+      lemma lx1 ox1   (case1 lt) with <-∨ lt
+      lemma lx zero   (case1 lt) | case1 refl = proj1 ( TransFinite1 lx zero )
+      lemma lx zero   (case1 lt) | case2 lt1 = lemma0  lx zero (case1 lt1)
+      lemma lx (suc ox1)   (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (suc (lv y) ≤ lx) ∨ ((lv y ≡ lx) ∧ (suc (ord y) ≤ suc ox1)) → Acc _o<_ y
+          lemma2 y lt1 with osuc-≡< lt1
+          ... | case1 refl = lemma lx ox1 (case1 a<sa)
+          ... | case2 lt2 = proj2 (TransFinite1 lx ox1) y lt2
+      lemma lx1 (suc ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (suc (lv y) ≤ lx1) ∨ ((lv y ≡ lx1) ∧ (suc (ord y) ≤ suc ox1)) → Acc _o<_ y
+          lemma2 y lt2 with osuc-≡< lt2
+          ... | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
+          ... | case2 (case1 lt3) = proj2 (TransFinite1 lx zero) y (case1 (<-trans lt3 lt1 ))
+          ... | case2 (case2 lt3) = proj2 (TransFinite1 lx zero) y (case1 lemma3) where
+              lemma3 : lv y < lx
+              lemma3 = begin
+                 suc (lv y) ≡⟨ cong suc (proj1 lt3) ⟩
+                 suc lx1 ≤⟨ lt1 ⟩
+                 lx ∎ where open ≤-Reasoning
+  TransFinite1 lx (suc ox)  = ⟪ caseOSuc lx ox lemma , lemma ⟫ where
+      lemma : (y : Ordinal) → y o< ordinal lx (suc ox) → Acc _o<_ y
+      lemma y lt with osuc-≡< lt
+      lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox )
+      lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1
 
--- TP : {n m l : Level} → {Q : Ordinal {suc n} → Set m} {P : { x y : Ordinal {suc n} } → Q x → Q y → Set l}  
---     → ( ind : (x : Ordinal {suc n})  → ( (y : Ordinal  {suc n} ) → y o< x → Q y ) → Q x )                                                                 
---     → ( (x : Ordinal {suc n} )  → ( prev : (y : Ordinal {suc n} ) → y o< x → Q y ) → {y : Ordinal {suc n}} → (y<x : y o< x)  → P (prev y y<x) (ind x prev)  )  
---     →  {x z : Ordinal {suc n} } → (z≤x : z o< osuc x ) → P (TransFinite3 {n} {m} { λ x → Q x } {!!} x  )  {!!} -- P (TransFinite {?} ind z) (TransFinite {?} ind x )
--- TP = ?
- 
+open import Ordinals
 
-open import Ordinals 
-
-C-Ordinal : {n : Level} →  Ordinals {suc n} 
-C-Ordinal {n} = record {
-     Ordinal = Ordinal {suc n}
+C-Ordinal :  Ordinals {Zero}
+C-Ordinal  = record {
+     Ordinal = Ordinal
    ; o∅ = o∅
    ; osuc = osuc
    ; _o<_ = _o<_
    ; isOrdinal = record {
        ordtrans = ordtrans
      ; trio< = trio<
-     ; ¬x<0 = ¬x<0 
+     ; ¬x<0 = ¬x<0
      ; <-osuc = <-osuc
      ; osuc-≡< = osuc-≡<
      ; TransFinite = TransFinite2
-     ; o<-irr = OrdIrr
-     ; Oprev-p  = Oprev-p 
+     ; Oprev-p  = Oprev-p
    } --
    -- isNext = record {
-   --     x<nx = x<nx 
+   --     x<nx = x<nx
    --   ; osuc<nx = λ {x} {y} → osuc<nx {x} {y}
-   --   -- ; ¬nx<nx = ¬nx<nx 
+   --   -- ; ¬nx<nx = ¬nx<nx
    -- }
   } where
-     next : Ordinal {suc n} → Ordinal {suc n}
-     next (ordinal lv ord) = ordinal (Suc lv) (Φ (Suc lv))
+     next : Ordinal  → Ordinal
+     next (ordinal lv ord) = ordinal (suc lv) zero
      x<nx :    { y : Ordinal } → (y o< next y )
      x<nx = case1 a<sa
-     osuc<nx : { x y : Ordinal } → x o< next y → osuc x o< next y 
-     osuc<nx (case1 lt) = case1 lt 
-     ¬nx<nx :  {x y : Ordinal} → y o< x → x o< next y →  ¬ ((z : Ordinal) → ¬ (x ≡ osuc z)) 
-     ¬nx<nx {x} {y} = lemma2 x where
-         lemma2 : (x : Ordinal) → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ x ≡ osuc z)
-         lemma2 (ordinal Zero (Φ 0)) (case2 ()) (case1 (s≤s z≤n)) not
-         lemma2 (ordinal Zero (OSuc 0 dx)) (case2 Φ<) (case1 (s≤s z≤n)) not = not _ refl
-         lemma2 (ordinal Zero (OSuc 0 dx)) (case2 (s< x)) (case1 (s≤s z≤n)) not = not _ refl
-         lemma2 (ordinal (Suc lx) (OSuc (Suc lx) ox)) y<x (case1 (s≤s (s≤s lt))) not = not _ refl
-         lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where
-             lemma3 : {n l : ℕ} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥
-             lemma3   (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n
+     osuc<nx : { x y : Ordinal } → x o< next y → osuc x o< next y
+     osuc<nx {x} {Y} (case1 lv<) = case1 lv<
      open Oprev
-     Oprev-p  : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n})  osuc x )
-     Oprev-p  (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where
-          lemma : (x : Ordinal) → osuc x ≡ (ordinal lv (Φ lv)) → ⊥
-          lemma x ()
-     Oprev-p  (ordinal lv (OSuc lv ox)) = yes record { oprev = ordinal lv ox ; oprev=x = refl }
-     ord1 : Set (suc n)
-     ord1 = Ordinal {suc n}
-     TransFinite2 : { ψ : ord1  → Set (suc (suc n)) }
+     Oprev-p  : (x : Ordinal) → Dec ( Oprev (Ordinal )  osuc x )
+     Oprev-p (ordinal lv₁ zero) = no (λ ())
+     Oprev-p (ordinal lv₁ (suc ord₁)) = yes (record { oprev = ordinal lv₁ ord₁  ; oprev=x = refl })
+     ord1 : Set
+     ord1 = Ordinal
+     TransFinite2 : {m : Level } { ψ : ord1  → Set m }
           → ( (x : ord1)  → ( (y : ord1  ) → y o< x → ψ y ) → ψ x )
           →  ∀ (x : ord1)  → ψ x
-     TransFinite2 {ψ} ind x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where
-        caseΦ : (lx : ℕ) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) →
-            ψ (record { lv = lx ; ord = Φ lx })
-        caseΦ lx prev = ind (ordinal lx (Φ lx) ) prev
-        caseOSuc :  (lx : ℕ) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) →
-            ψ (record { lv = lx ; ord = OSuc lx x₁ })
-        caseOSuc lx ox prev = ind (ordinal lx (OSuc lx ox)) prev 
+     TransFinite2 {ψ} ind x = TransFinite ind x
 
 
--- H-Ordinal : {n : Level} → Ordinals {suc n} →  Ordinals {suc n}  →  Ordinals {suc n} 
+-- H-Ordinal : {n : Level} → Ordinals {suc n} →  Ordinals {suc n}  →  Ordinals {suc n}
 -- H-Ordinal {n} O1 O2 = record {
---      Ordinal = Ordinals.Ordinal O1 ∧ Ordinals.Ordinal O2 
+--      Ordinal = Ordinals.Ordinal O1 ∧ Ordinals.Ordinal O2
 --   }
 -- We may have an oridinal as proper subset  of an ordinal
 --   then the internal ordinal become a set in the outer ordinal
--- a/src/zorn.agda	Sun Jun 23 09:32:40 2024 +0900
+++ b/src/zorn.agda	Fri Jun 28 17:41:43 2024 +0900
@@ -1156,8 +1156,8 @@
       zeq {xa} {xb} {z} xa<x xb<x xa≤xb z≤xa =  supf-unique A f mf< ay xa≤xb
           (pzc xa<x)  (pzc xb<x)  z≤xa
 
-      iceq : {ix iy : Ordinal } → ix ≡ iy → {i<x : ix o< x } {i<y : iy o< x } → supfz i<x ≡ supfz i<y
-      iceq refl = cong supfz  o<-irr
+      -- iceq : {ix iy : Ordinal } → ix ≡ iy → {i<x : ix o< x } {i<y : iy o< x } → supfz i<x ≡ supfz i<y
+      -- iceq refl = cong supfz  o<-irr
 
       IChain-i : {z : Ordinal } → IChain ay supfz z → Ordinal
       IChain-i (ic-init fc) = o∅