Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1195:68239d102d15
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Feb 2023 19:05:58 +0900 |
parents | 6174001ba1c0 |
children | e7c3bd9e7c3e |
files | src/Topology.agda |
diffstat | 1 files changed, 17 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Tue Feb 28 15:01:17 2023 +0900 +++ b/src/Topology.agda Tue Feb 28 19:05:58 2023 +0900 @@ -441,25 +441,20 @@ fp08 : odef (* X) (& fp07) fp08 = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) no-cover : ¬ ( (* (OX CX)) covers L ) - no-cover cov = ⊥-elim ( SB.¬i⊆Ut (fp02 fp01 (Compact.isFinite compact (OOX CX) cov) ) fp12 ) where + no-cover cov = ⊥-elim ? where fp01 : Ordinal fp01 = Compact.finCover compact (OOX CX) cov record SB (t : Ordinal) : Set n where field i : Ordinal - ¬i⊆Ut : ¬ ( (L \ * i) ⊆ Union (* t)) sb : Subbase (* X) (& (L \ * i)) fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → SB t - fp02 t fin-e = record { i = & ( L \ fp07) ; ¬i⊆Ut = fp20 ; sb = gi (subst (λ k → odef (* X) k) fp21 fp08) } where + fp02 t fin-e = record { i = & ( L \ fp07) ; sb = gi (subst (λ k → odef (* X) k) fp21 fp08) } where fp22 : fp07 ⊆ L fp22 {x} lt = cs⊆L top (CX fp08) lt fp21 : & fp07 ≡ & (L \ * (& (L \ fp07))) fp21 = cong (&) (trans (sym (L\Lx=x fp22)) (cong (λ k → L \ k) (sym *iso))) - fp20 : ¬ (L \ * (& (L \ fp07))) ⊆ Union (* o∅) - fp20 lt = ? - fp02 t (fin-i {x} tx ) = record { i = x ; sb = gi fp03 ; ¬i⊆Ut = fp23 } where - fp23 : ¬ (L \ * x) ⊆ Union (* (& (* x , * x))) - fp23 = ? + fp02 t (fin-i {x} tx ) = record { i = x ; sb = gi fp03 } where fp03 : odef (* X) (& (L \ * x)) fp03 with subst (λ k → odef k x ) *iso tx ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where @@ -472,7 +467,7 @@ & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ & (L \ * x ) ∎ where open ≡-Reasoning - fp02 t (fin-∪ {tx} {ty} x y ) = record { i = & (* (SB.i (fp02 tx x)) ∪ * (SB.i (fp02 ty y))) ; sb = fp11 ; ¬i⊆Ut = ? } where + fp02 t (fin-∪ {tx} {ty} x y ) = record { i = & (* (SB.i (fp02 tx x)) ∪ * (SB.i (fp02 ty y))) ; sb = fp11 } where fp04 : {tx ty : Ordinal} → & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty))) fp04 {tx} {ty} = cong (&) ( ==→o≡ record { eq→ = fp05 ; eq← = fp09 } ) where fp05 : {x : Ordinal} → odef (* (& (L \ * tx)) ∩ * (& (L \ * ty))) x → odef (L \ * (& (* tx ∪ * ty))) x @@ -488,9 +483,7 @@ fp11 : Subbase (* X) (& (L \ * (& ((* (SB.i (fp02 tx x)) ∪ * (SB.i (fp02 ty y))))))) fp11 = subst (λ k → Subbase (* X) k ) fp04 ( g∩ (SB.sb (fp02 tx x)) (SB.sb (fp02 ty y )) ) fp12 : (L \ * (SB.i (fp02 fp01 (Compact.isFinite compact (OOX CX) cov)))) ⊆ Union (* fp01) - fp12 {x} ⟪ Lx , not ⟫ = ⊥-elim ( fp14 (λ {y} lt → record { owner = cover fcov (fp16 lt) - ; ao = P∋cover fcov (fp16 lt) - ; ox = isCover fcov (fp16 lt) } )) where + fp12 {x} ⟪ Lx , not ⟫ = fp17 fp19 where fcov = Compact.isCover compact (OOX CX) cov fp13 : Ordinal fp13 = SB.i (fp02 fp01 (Compact.isFinite compact (OOX CX) cov)) @@ -498,8 +491,18 @@ fp16 {y} ⟪ Ly , _ ⟫ = Ly fp15 : ¬ ( odef (* fp13) x) fp15 = not - fp14 : ¬ ( (L \ * fp13 ) ⊆ Union (* fp01 )) - fp14 = SB.¬i⊆Ut (fp02 fp01 (Compact.isFinite compact (OOX CX) cov)) + fp19 : odef (L \ * fp13) x + fp19 with ∨L\X {L} {* fp13} Lx + fp19 | case1 lt = ⊥-elim (not lt) + fp19 | case2 lt = lt + fp17 : (L \ * fp13 ) ⊆ Union (* fp01 ) + fp17 {y} lt = record { owner = cover fcov (fp16 lt) ; ao = P∋cover fcov (fp16 lt) ; ox = isCover fcov (fp16 lt) } + fcov : Finite-∪ (* (OX CX)) (Compact.finCover compact (OOX CX) cov) + fcov = Compact.isFinite compact (OOX CX) cov + ¬i⊆Ut : {i : Ordinal } → (sb : Subbase (* X) (& (L \ * i))) → ¬ ( (L \ * i) =h= od∅ ) + ¬i⊆Ut {i} sb = 0<P→ne (fip sb) + f20 : (cov : (* (OX CX)) covers L ) → ¬ ¬ ( (* (Compact.finCover compact (OOX CX) cov)) covers L ) + f20 = ? record NC : Set n where -- x is not covered field x : Ordinal