Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1216:6861b48c1e08
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Mar 2023 20:07:24 +0900 |
parents | 881e85e12e38 |
children | 287d40830be5 |
files | src/OPair.agda src/Tychonoff.agda |
diffstat | 2 files changed, 33 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OPair.agda Sun Mar 05 14:46:53 2023 +0900 +++ b/src/OPair.agda Sun Mar 05 20:07:24 2023 +0900 @@ -198,6 +198,11 @@ zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl +zp-iso1 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (* (zπ1 p) ≡ (* a)) ∧ (* (zπ2 p) ≡ (* b)) +zp-iso1 {A} {B} {a} {b} pab = prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) zz11) ) where + zz11 : & < * (zπ1 pab) , * (zπ2 pab) > ≡ & < * a , * b > + zz11 = zp-iso pab + ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by)
--- a/src/Tychonoff.agda Sun Mar 05 14:46:53 2023 +0900 +++ b/src/Tychonoff.agda Sun Mar 05 20:07:24 2023 +0900 @@ -339,15 +339,37 @@ isP→PxQ {x} x⊆P (ab-pair p q) = ab-pair (x⊆P p) q F⊆pxq : {x : HOD } → filter F ∋ x → x ⊆ ZFP P Q F⊆pxq {x} fx {y} xy = f⊆L F fx y (subst (λ k → odef k y) (sym *iso) xy) + fx→px : {x : HOD } → filter F ∋ x → HOD + fx→px {x} fx = Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) )) + fx→px1 : {p : HOD } → (fp : filter F ∋ ZFP p Q ) → p ⊆ P → fx→px fp ≡ p + fx→px1 {p} fp p⊆P = ==→o≡ record { eq→ = ? ; eq← = ? } where + ty20 : {x : Ordinal} → odef (fx→px fp) x → odef p x + ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = ? where + ty22 : ZFProduct p Q (& < * a , * b >) + ty22 = ab-pair pz qz + ty24 : * x ≡ * a + ty24 = begin + * x ≡⟨ cong (*) x=ψz ⟩ + _ ≡⟨ *iso ⟩ + * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ proj1 (zp-iso1 {p} {Q} ? ) ⟩ + * a ∎ where open ≡-Reasoning + ty23 : * (zπ1 ty22 ) ≡ * a + ty23 = proj1 ( zp-iso1 {p} {Q} (ab-pair pz qz) ) + ty21 : odef (ZFP P Q ) (& (* (& ( < * a , * b > ) ))) + ty21 = F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)) + a=x : x ≡ a + a=x with subst (λ k → odef (ZFP P Q) k) &iso ty21 | subst (λ k → x ≡ k ) &iso x=ψz + ... | t | refl with proj1 ( zp-iso1 {P} {Q} t ) + ... | u = subst₂ (λ j k → j ≡ k ) (trans &iso ?) &iso (cong (&) u ) + pa : odef p x + pa with subst (λ k → odef (ZFP P Q) k) &iso ty21 | subst (λ k → x ≡ k ) &iso x=ψz + ... | t | refl = ? FPSet : HOD FPSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) ))) FPSet∋zpq : {q : HOD} → q ⊆ P → filter F ∋ ZFP q Q → FPSet ∋ q - FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = ? ; x=ψz = ? } where - ty04 : q ≡ Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq ) xy))) - ty04 = ==→o≡ record { eq→ = ? ; eq← = ? } where - ty041 : {x : Ordinal} → odef q x → odef (Replace' (* (& (ZFP q Q))) - (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy)))) x - ty041 {x} qx = record { z = _ ; az = subst (λ k → odef k (& < * x , * ? > )) (sym *iso) (ab-pair qx ? ) ; x=ψz = ? } + FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = ? } where + ty11 : & q ≡ zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) ? ) + ty11 = ? FPSet⊆PP : FPSet ⊆ Power P FPSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 }