Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 128:69a845b82854
... dead end?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jul 2019 19:13:43 +0900 |
parents | 870fe02c7a07 |
children | 2a5519dcc167 |
files | HOD.agda |
diffstat | 1 files changed, 2 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 01 16:03:15 2019 +0900 +++ b/HOD.agda Mon Jul 01 19:13:43 2019 +0900 @@ -343,7 +343,7 @@ -- -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x - -- In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity + -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity -- POrd : {A t : HOD} → Power A ∋ t → Power A ∋ Ord (od→ord t) POrd {A} {t} P∋t = o<→c< P∋t @@ -359,7 +359,7 @@ Ltx : {n : Level} → {x t : HOD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x Ltx {n} {x} {t} lt = c<→o< lt lemma1 : od→ord (Ord (od→ord t)) o< od→ord minsup → minsup ∋ Ord (od→ord t) - lemma1 lt = ? + lemma1 lt = {!!} -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t