Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 767:6c87cb98abf2
spi <= u
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 Jul 2022 22:27:15 +0900 |
parents | e1c6c32efe01 |
children | 67c7d4b43844 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 25 21:21:29 2022 +0900 +++ b/src/zorn.agda Mon Jul 25 22:27:15 2022 +0900 @@ -640,12 +640,17 @@ ysup f mf {y} ay = supP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay) inititalChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → ZChain A f mf ay o∅ - inititalChain f mf {y} ay = record { supf = isupf ; chain⊆A = λ lt → proj1 lt ; chain∋init = cy ; csupf = csupf ; fcy<sup = ? + inititalChain f mf {y} ay = record { supf = isupf ; chain⊆A = λ lt → proj1 lt ; chain∋init = cy + ; csupf = λ {z} → csupf {z} ; fcy<sup = λ u<0 → ⊥-elim ( ¬x<0 u<0 ) ; initial = isy ; f-next = inext ; f-total = itotal ; sup=u = λ _ b<0 → ⊥-elim (¬x<0 b<0) ; order = λ b<0 → ⊥-elim (¬x<0 b<0) } where spi = & (SUP.sup (ysup f mf ay)) isupf : Ordinal → Ordinal - isupf z = spi + isupf z with trio< z spi + ... | tri< a ¬b ¬c = y + ... | tri≈ ¬a b ¬c = spi + ... | tri> ¬a ¬b c = spi sp = ysup f mf ay + asi = SUP.A∋maximal sp cy : odef (UnionCF A f mf ay isupf o∅) y cy = ⟪ ay , ch-init (init ay) ⟫ y<sup : * y ≤ SUP.sup (ysup f mf ay) @@ -653,7 +658,7 @@ isy : {z : Ordinal } → odef (UnionCF A f mf ay isupf o∅) z → * y ≤ * z isy {z} ⟪ az , uz ⟫ with uz ... | ch-init fc = s≤fc y f mf fc - ... | ch-is-sup u is-sup fc = ≤-ftrans (subst (λ k → * y ≤ k) (sym *iso) y<sup) (s≤fc (& (SUP.sup (ysup f mf ay))) f mf fc ) + ... | ch-is-sup u is-sup fc = ? inext : {a : Ordinal} → odef (UnionCF A f mf ay isupf o∅) a → odef (UnionCF A f mf ay isupf o∅) (f a) inext {a} ua with (proj2 ua) ... | ch-init fc = ⟪ proj2 (mf _ (proj1 ua)) , ch-init (fsuc _ fc ) ⟫ @@ -664,7 +669,25 @@ uz01 = chain-total A f mf ay isupf (proj2 ca) (proj2 cb) csupf : {z : Ordinal} → odef (UnionCF A f mf ay isupf o∅) (isupf z) - csupf {z} = ? + csupf {z} = uz00 where + -- = ? where -- ⟪ asi , ch-is-sup spi uz02 (init asi) ⟫ where + uz03 : {z : Ordinal } → FClosure A f y z → (z ≡ spi) ∨ (z << spi) + uz03 {z} fc with SUP.x<sup sp (subst (λ k → FClosure A f y k ) (sym &iso) fc ) + ... | case1 eq = case1 ( begin + z ≡⟨ sym &iso ⟩ + & (* z) ≡⟨ cong (&) eq ⟩ + spi ∎ ) where open ≡-Reasoning + ... | case2 lt = case2 (subst (λ k → * z < k ) (sym *iso) lt ) + uz04 : {sup1 z1 : Ordinal} → sup1 o< spi → FClosure A f (isupf sup1) z1 → (z1 ≡ isupf spi) ∨ (z1 << isupf spi) + uz04 {s} {z} s<spi fcz = ? + -- uz02 : ChainP A f mf ay isupf spi spi + -- uz02 = record { csupz = init asi ; supfu=u = refl ; fcy<sup = uz03 ; order = ? } + uz00 : odef (UnionCF A f mf ay isupf o∅) (isupf z) + uz00 with trio< z spi + ... | tri< a ¬b ¬c = ? + ... | tri≈ ¬a b ¬c = ? + ... | tri> ¬a ¬b c = ? + -- -- create all ZChains under o< x