Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1093:6caa088346f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 Dec 2022 08:39:39 +0900 |
parents | 87c2da3811c3 |
children | b19716b2dbae |
files | src/zorn.agda |
diffstat | 1 files changed, 19 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Dec 21 07:30:18 2022 +0900 +++ b/src/zorn.agda Wed Dec 21 08:39:39 2022 +0900 @@ -5,7 +5,7 @@ open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import OD hiding ( _⊆_ ) -module zorn1 {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) (PO : IsStrictPartialOrder _≡_ _<_ ) where +module zorn {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) (PO : IsStrictPartialOrder _≡_ _<_ ) where -- -- Zorn-lemma : { A : HOD } @@ -294,13 +294,18 @@ chain : HOD chain⊆A : chain ⊆ A f-total : IsTotalOrderSet chain - cf : Ordinal → Ordinal - is-cf : {x : Ordinal} → odef A x → odef A (cf x) ∧ ( * x < * (cf x) ) - f-next : {x : Ordinal } → odef chain x → odef chain (cf x) - fixpoint : (sp1 : MinSUP A chain ) → odef chain (MinSUP.sup sp1) - cf-is-<-monotonic : <-monotonic-f A cf - cf-is-<-monotonic x ax = ⟪ proj2 (is-cf ax ) , proj1 (is-cf ax ) ⟫ - cf-is-≤-monotonic : ≤-monotonic-f A cf + supf : Ordinal → Ordinal + asupf : {z : Ordinal} → odef A (supf z) + supf-< : {z : Ordinal} → odef A z → * z < * (supf z) + f-next : {z : Ordinal } → odef chain z → odef chain (supf z) + supf→chain : Ordinal → Ordinal + sc-iso : {z : Ordinal} → supf (supf→chain z) ≡ z + sc=chain : supf→chain x ≡ & chain + sc-mono : {a b : Ordinal} → a o< b → supf→chain a o< supf→chain b + + cf-is-<-monotonic : <-monotonic-f A supf + cf-is-<-monotonic x ax = ⟪ supf-< ax , asupf ⟫ + cf-is-≤-monotonic : ≤-monotonic-f A supf cf-is-≤-monotonic x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic x ax )) , proj2 ( cf-is-<-monotonic x ax ) ⟫ SZ : ¬ Maximal A → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain A ay x @@ -330,18 +335,18 @@ -- fixpoint : (zc : ZChain A as0 (& A)) → (sp1 : MinSUP A (ZChain.chain zc)) - → ZChain.cf zc (MinSUP.sup sp1) ≡ MinSUP.sup sp1 + → ZChain.supf zc (MinSUP.sup sp1) ≡ MinSUP.sup sp1 fixpoint zc sp1 = z14 where chain = ZChain.chain zc sp : Ordinal sp = MinSUP.sup sp1 asp : odef A sp asp = MinSUP.as sp1 - f = ZChain.cf zc + f = ZChain.supf zc mf : ≤-monotonic-f A f mf = ZChain.cf-is-≤-monotonic zc z12 : odef chain sp - z12 = ZChain.fixpoint zc sp1 + z12 = ? -- ZChain.fixpoint zc sp1 z14 : f sp ≡ sp z14 with ZChain.f-total zc (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 )) (subst (λ k → odef chain k) (sym &iso) z12 ) ... | tri< a ¬b ¬c = ⊥-elim z16 where @@ -365,14 +370,14 @@ -- ¬Maximal→¬cf-mono : (nmx : ¬ Maximal A ) → (zc : ZChain A as0 (& A)) → ⊥ - ¬Maximal→¬cf-mono nmx zc = <-irr0 {* (ZChain.cf zc c)} {* c} - (subst (λ k → odef A k ) (sym &iso) (proj1 (ZChain.is-cf zc (MinSUP.as msp1 )))) + ¬Maximal→¬cf-mono nmx zc = <-irr0 {* (ZChain.supf zc c)} {* c} + (subst (λ k → odef A k ) (sym &iso) (ZChain.asupf zc )) (subst (λ k → odef A k) (sym &iso) (MinSUP.as msp1) ) (case1 ( cong (*)( fixpoint zc msp1 ))) -- x ≡ f x ̄ (proj1 (ZChain.cf-is-<-monotonic zc c (MinSUP.as msp1 ))) where -- x < f x msp1 : MinSUP A (ZChain.chain zc) - msp1 = msp0 (ZChain.cf zc) (ZChain.cf-is-<-monotonic zc) as0 zc + msp1 = msp0 (ZChain.supf zc) (ZChain.cf-is-<-monotonic zc) as0 zc c : Ordinal c = MinSUP.sup msp1