Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 148:6e767ad3edc2
give up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2019 19:45:59 +0900 |
parents | c848550c8b39 |
children | e022c0716936 ebcbfd9d9c8e |
files | HOD.agda Todo |
diffstat | 2 files changed, 11 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 08 19:35:23 2019 +0900 +++ b/HOD.agda Mon Jul 08 19:45:59 2019 +0900 @@ -163,13 +163,7 @@ t : (od→ord x) o< (od→ord a) t = c<→o< {suc n} {x} {a} lt -o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} -o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅ {suc n} )) -o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where - lemma : o∅ {suc n } o< (od→ord (od∅ {suc n} )) → ⊥ - lemma lt = {!!} -o∅≡od∅ {n} | tri≈ ¬a b ¬c = trans (cong (λ k → ord→od k ) b ) oiso -o∅≡od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) +-- o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where @@ -201,11 +195,8 @@ -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) -csuc : {n : Level} → OD {suc n} → OD {suc n} -csuc x = Ord ( osuc ( od→ord x )) - in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} -in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) } +in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } -- Power Set of X ( or constructible by λ y → def X (od→ord y ) @@ -342,9 +333,9 @@ replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where lemma : def (in-codomain X ψ) (od→ord (ψ x)) lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) - (sym (subst (λ k → Ord (od→ord x) ≡ k) oiso {!!} )) } )) + {!!} } )) replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y)) - replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where + replacement→ {ψ} X x lt = contra-position lemma (lemma2 {!!}) where lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (Ord y)))) → ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y))) lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where @@ -451,7 +442,7 @@ lemma5 : od→ord (A ∩ Ord (od→ord t)) ≡ od→ord (A ∩ ord→od (od→ord t)) lemma5 = cong (λ k → od→ord (A ∩ k )) {!!} lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) - lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma4 }) ) where + lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = {!!} }) ) where ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Todo Mon Jul 08 19:45:59 2019 +0900 @@ -0,0 +1,6 @@ +Mon Jul 8 19:43:37 JST 2019 + + ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive + + remove ord-Ord and prove with some assuption in HOD.agda + union, power set, replace, inifinite