Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 529:6e94ea146fc1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 20 Apr 2022 10:44:38 +0900 |
parents | 8facdd7cc65a |
children | 06a655ca04b8 |
files | src/zorn.agda |
diffstat | 1 files changed, 25 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Apr 20 01:54:57 2022 +0900 +++ b/src/zorn.agda Wed Apr 20 10:44:38 2022 +0900 @@ -140,18 +140,8 @@ x : HOD iso : TA OS≈ (Cut<T TA x) -OS<-cmp : {x : HOD} → Trichotomous {_} {IsTotalOrderSet x} _OS≈_ _OS<_ -OS<-cmp A B = {!!} - -record ZChain ( A : HOD ) (y : Ordinal) : Set (Level.suc n) where - field - max : HOD - A∋max : A ∋ max - y<max : y o< & max - chain : HOD - chain⊆A : chain ⊆ A - total : IsTotalOrderSet chain - chain-max : (x : HOD) → chain ∋ x → (x ≡ max ) ∨ ( x < max ) +-- OS<-cmp : {x : HOD} → Trichotomous {_} {IsTotalOrderSet x} _OS≈_ _OS<_ +-- OS<-cmp A B = {!!} data IChain (A : HOD) : Ordinal → Set n where ifirst : {ox : Ordinal} → odef A ox → IChain A ox @@ -270,7 +260,7 @@ IPO : IsPartialOrderSet (InFCSet A ax ifc ) IPO = ⊆-IsPartialOrderSet record { incl = λ {y} lt → incl (InFCSet⊆A A {x} ax ifc) lt} PO B = IChainSet A ax - cnext = {!!} -- cinext A ax ifc + cnext = cinext A ax ifc ct02 : {oy : Ordinal} → (y : Chain B x cnext oy ) → A ∋ * oy ct02 y = incl (IChainSet⊆A {A} ax) (subst (λ k → odef (IChainSet A ax) k) (sym &iso) (ct∈A B x cnext y) ) ct-inject : {ox oy : Ordinal} → (x1 : Chain B x cnext ox ) → (y : Chain B x cnext oy ) @@ -288,7 +278,7 @@ ct07 : * ox < * (cnext oy1) ct07 with ODC.∋-p O (IChainSet A ax) (* oy1) ... | no not = ⊥-elim ( not (subst (λ k → odef (IChainSet A ax) k ) (sym &iso) ay ) ) - ... | yes ay1 = {!!} where -- IsStrictPartialOrder.trans PO {me (ct02 x1) } {me (ct02 y)} {me ct031 } (ct-monotonic x1 y a ) ct011 where + ... | yes ay1 = IsStrictPartialOrder.trans PO {me (ct02 x1) } {me (ct02 y)} {me ct031 } (ct-monotonic x1 y a ) ct011 where ct031 : A ∋ * (IChainSup>.y (InfiniteChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 ) )) ct031 = subst (λ k → odef A k ) (sym &iso) ( IChainSup>.A∋y (InfiniteChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) ) @@ -298,7 +288,7 @@ ct11 : * ox < * (cnext oy1) ct11 with ODC.∋-p O (IChainSet A ax) (* oy1) ... | no not = ⊥-elim ( not (subst (λ k → odef (IChainSet A ax) k ) (sym &iso) ay ) ) - ... | yes ay1 = subst (λ k → * k < _) (sym (ct-inject _ _ b)) {!!} where + ... | yes ay1 = subst (λ k → * k < _) (sym (ct-inject _ _ b)) ct011 where ct011 : * oy1 < * ( IChainSup>.y (InfiniteChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) ) ct011 = IChainSup>.y>x (InfiniteChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> lt c ) @@ -328,17 +318,6 @@ ct15 : ¬ (elm x1 < elm y) ct15 lt = ct13 {x1} {y} lt (subst₂ (λ j k → j < k ) *iso *iso (ct-monotonic (is-elm y) (is-elm x1) c ) ) -extendInfiniteChain : (A : HOD) → {x mx y my : Ordinal} (ax : A ∋ * x) (ay : A ∋ * y) - → IsPartialOrderSet A - → (ifcx : InfiniteChain A mx ax ) → (ifcy : InfiniteChain A my ay ) - → * y ≤ * mx - → InfiniteChain A (maxα mx my) ax -extendInfiniteChain A {x} {mx} {y} {my} ax ay PO ifcx ifcy y<mx = record { chain<x = eic00 ; c-infinite = eic01 } where - eic00 : (z : Ordinal) → odef (IChainSet A ax) z → z o< maxα mx my - eic00 z xz = {!!} - eic01 : (z : Ordinal) (cy : odef (IChainSet A ax) z) → IChainSup> A (ic→A∋y A ax cy) - eic01 z cy = {!!} - record IsFC (A : HOD) {x : Ordinal} (ax : A ∋ * x) (y : Ordinal) : Set n where field icy : odef (IChainSet A ax) y @@ -441,6 +420,22 @@ y<z = ic→< {A} PO y (subst (λ k → odef A k) &iso ay) (IChained.iy (proj2 icy)) (subst (λ k → ic-connect k (IChained.iy (proj2 icy))) &iso (IChained.ic (proj2 icy))) +<-TransFinite : ( A : HOD ) → IsTotalOrderSet A → { P : {x : HOD } → A ∋ x → Set (Level.suc n) } + → ( (x y : HOD) → (ax : A ∋ x ) → A ∋ y → x < y → P ax ) → {x : HOD} → (ax : odef A (& (* (& x )))) → P ax +<-TransFinite A TA {P} prev {x} ax = TransFinite ind (& x) ax where + ind : (x : Ordinal) → ((y : Ordinal) → y o< x → (ay : A ∋ * y) → P ay) → (ax : A ∋ * x) → P ax + ind = {!!} + +record ZChain ( A : HOD ) (y : Ordinal) : Set (Level.suc n) where + field + zmax : HOD + A∋max : A ∋ zmax + y<max : y o< & zmax + chain : HOD + chain⊆A : chain ⊆ A + total : IsTotalOrderSet chain + chain-max : (x : HOD) → chain ∋ x → (x ≡ zmax ) ∨ ( x < zmax ) + record SUP ( A B : HOD ) : Set (Level.suc n) where field sup : HOD @@ -459,22 +454,14 @@ (IsStrictPartialOrder.trans PO {me A∋b} {me A∋a} {me A∋b} b<a a<b) s = ODC.minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) sa = ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)) + MaxTC : HOD + MaxTC = {!!} z02 : {x max : Ordinal } → (ax : A ∋ * x ) → InfiniteChain A max ax → ⊥ z02 {x} {max} ax ifc = zc5 ifc where FC : HOD FC = IChainSet A ax zc6 : (ifc : InfiniteChain A max ax) → ¬ SUP A (InFCSet A ax ifc) - zc6 ifc sup = z01 nxa (SUP.A∋maximal sup) (SUP.x<sup sup {!!} ) {!!} where - nx : Ordinal - nx = cinext A ax ifc (& (SUP.sup sup)) - zc7 : A ∋ * (& (SUP.sup sup)) - zc7 = subst (λ k → odef A k ) (cong (&) (sym *iso)) (SUP.A∋maximal sup) - sup-ics : odef (IChainSet A ax) (& (SUP.sup sup)) - sup-ics = {!!} -- SUP.A∋maximal sup - ncsup : (z : Ordinal) → (az : odef (IChainSet A ax) z) → IChainSup> A {z} (subst (odef A) (sym &iso) (proj1 az)) - ncsup z az = InfiniteChain.c-infinite ifc z az - nxa : A ∋ * nx - nxa = {!!} -- cinext∈A A ax ifc (& (SUP.sup sup)) {!!} + zc6 ifc sup = z01 {!!} (SUP.A∋maximal sup) (SUP.x<sup sup {!!} ) {!!} where zc5 : InfiniteChain A max ax → ⊥ zc5 ifc = zc6 ifc ( supP (InFCSet A ax ifc) (InFCSet⊆A A {x} ax ifc) ( TransitiveClosure-is-total A {x} ax PO ifc )) -- z03 : {x : Ordinal } → (ax : A ∋ * x ) → InfiniteChain A (& A) ax → ⊥ @@ -487,7 +474,7 @@ zorn03 x = TransFinite ind x zorn04 : Maximal A zorn04 with zorn03 (& A) - ... | case1 chain = ⊥-elim ( o<> (c<→o< {ZChain.max chain} {A} (ZChain.A∋max chain)) (ZChain.y<max chain) ) + ... | case1 chain = ⊥-elim ( o<> (c<→o< {ZChain.zmax chain} {A} (ZChain.A∋max chain)) (ZChain.y<max chain) ) ... | case2 m = m -- usage (see filter.agda )