Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 941:6f342473f298
avoided
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Oct 2022 14:17:04 +0900 |
parents | aee83a7f9f57 |
children | d396af76c559 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Oct 29 13:55:18 2022 +0900 +++ b/src/zorn.agda Sat Oct 29 14:17:04 2022 +0900 @@ -1475,21 +1475,26 @@ -- supf u o< spuf c → order not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx) - not-hasprev hp = ⊥-elim ( <-irr ? z30 ) where - y : Ordinal - y = HasPrev.y hp + not-hasprev hp = ⊥-elim (z29 spd ? hp) where -- z31 : odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) (cf nmx d) -- z31 = ? - -- z29 : {mc : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) - -- → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) (cf nmx (MinSUP.sup spd)) - -- → (* (cf nmx (MinSUP.sup spd)) ≡ * (MinSUP.sup spd)) ∨ (* (cf nmx (MinSUP.sup spd)) < * (MinSUP.sup spd)) - -- z29 {mc} {asc} spd afd with MinSUP.x<sup spd afd - -- ... | case1 eq = ? - -- ... | case2 lt = ? - z30 : * d < * (cf nmx d) - z30 = ? - z24 : y << d - z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) + z29 : {mc : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) + → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) (cf nmx (MinSUP.sup spd)) + → HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) (MinSUP.sup spd)) (MinSUP.sup spd) (cf nmx) + → ⊥ + z29 {mc} {asc} spd ufd hp = <-irr ? z30 where + y : Ordinal + y = HasPrev.y hp + d1 : Ordinal + d1 = MinSUP.sup spd -- supf d1 ≡ d + z30 : * d1 < * (cf nmx d1) + z30 = ? + z24 : y << d1 + z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) + -- z26 : (* (cf nmx (MinSUP.sup spd)) ≡ * (MinSUP.sup spd)) ∨ (* (cf nmx (MinSUP.sup spd)) < * (MinSUP.sup spd)) + -- z26 with MinSUP.x<sup spd ? + -- ... | case1 eq = ? + -- ... | case2 lt = ? z25 : odef (ZChain.chain zc) (cf nmx d) z25 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) (ZChain.f-next zc