Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1227:72b5815be243
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Mar 2023 19:19:03 +0900 |
parents | c8f5376a9623 |
children | e3f20bc4fac9 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 10 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Tue Mar 07 18:58:23 2023 +0900 +++ b/src/Tychonoff.agda Tue Mar 07 19:19:03 2023 +0900 @@ -491,6 +491,8 @@ uflp : UFLP TP FP UFP uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP + -- copy and pasted, sorry + -- isQ→PxQ : {x : HOD} → (x⊆Q : x ⊆ Q ) → ZFP P x ⊆ ZFP P Q isQ→PxQ {x} x⊆Q (ab-pair p q) = ab-pair p (x⊆Q q) fx→qx : {x : HOD } → filter F ∋ x → HOD @@ -633,19 +635,18 @@ uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) - Pf = {!!} - pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → {!!} ⊆ filter F - pq⊆F = {!!} + Pf = ab-pair (UFLP.P∋limit uflp) (UFLP.P∋limit uflq) isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ∋ * v - isL {v} npq = {!!} where + isL {v} npq = filter1 F (λ z xz → Neighbor.v⊆P npq (subst (λ k → odef k z) *iso xz)) + (subst (λ k → odef (filter F) k) (sym &iso) (F∋base pqb ?)) ? where bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u npq) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) bpq = Neighbor.ou npq (Neighbor.ux npq) pqb : Subbase (pbase TP TQ) (Base.b bpq ) pqb = Base.sb bpq pqb⊆opq : * (Base.b bpq) ⊆ * ( Neighbor.u npq ) pqb⊆opq = Base.b⊆u bpq - base⊆F : {b : Ordinal } → Subbase (pbase TP TQ) b → * b ⊆ * (Neighbor.u npq) → * b ⊆ filter F - base⊆F (gi (case1 px)) b⊆u {z} bz = fz where + F∋base : {b : Ordinal } → Subbase (pbase TP TQ) b → * b ⊆ * (Neighbor.u npq) → odef (filter F) b + F∋base (gi (case1 px)) b⊆u = ? where -- F is ultra, so F ∋ b ∨ F ∋ (ZFP P Q \ b) -- FP ∋ b ∨ FQ ∋ b -- Neighbor b ∋ limit @@ -655,28 +656,20 @@ -- x is also an elment of Proj1 F because Proj1 F has UFLP (uflp) -- BaseP ∩ F is not empty -- (Base P ∩ F) ⊆ F , (Base P ) ⊆ F , - il1 : odef (Power P) z ∧ ? -- ZFPproj1 (filter F) z - il1 = {!!} -- UFLP.is-limit uflp ? bz nei1 : HOD nei1 = ? -- ZFPproj1 (* (Neighbor.u npq)) (Power P) (Power Q) plimit : Ordinal plimit = UFLP.limit uflp nproper : {b : Ordinal } → * b ⊆ nei1 → o∅ o< b nproper = {!!} - b∋z : odef nei1 z - b∋z = {!!} - bp : BaseP {P} TP Q z + bp : BaseP {P} TP Q ? bp = record { p = {!!} ; op = {!!} ; prod = {!!} } neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F neip = {!!} - il2 : * z ⊆ ZFP (Power P) (Power Q) - il2 = {!!} il3 : filter F ∋ {!!} il3 = {!!} - fz : odef (filter F) z - fz = subst (λ k → odef (filter F) k) &iso (filter1 F {!!} {!!} {!!}) - base⊆F (gi (case2 qx)) b⊆u {z} bz = {!!} - base⊆F (g∩ b1 b2) b⊆u {z} bz = {!!} + F∋base (gi (case2 qx)) b⊆u = ? + F∋base (g∩ b1 b2) b⊆u = ?