Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 328:72f3e3b44c27
intoduce ωmax
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jul 2020 11:40:55 +0900 |
parents | cde56f704eac |
children | 5544f4921a44 |
files | OD.agda |
diffstat | 1 files changed, 11 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 05 04:09:00 2020 +0900 +++ b/OD.agda Sun Jul 05 11:40:55 2020 +0900 @@ -319,27 +319,18 @@ isuc : {x : Ordinal } → infinite-d x → infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + -- ω can be diverged in our case, since we have no restriction on the corresponding ordinal of a pair. + -- We simply assumes nfinite-d y has a maximum. + -- + -- This means that many of OD cannot be HODs because of the od→ord mapping divergence. + -- We should have some axioms to prevent this, but it may complicate thins. + -- + postulate + ωmax : Ordinal + <ωmax : {y : Ordinal} → infinite-d y → y o< ωmax + infinite : HOD - infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where - u : HOD → HOD - u x = Union (x , (x , x)) - lemma1 : {x : HOD} → u x ⊆ Union (u x , (u x , u x)) - lemma1 {x} = record { incl = λ {y} lt → lemma2 y lt } where - lemma2 : (y : HOD) → u x ∋ y → ((z : Ordinal) → (z ≡ od→ord (u x)) ∨ (z ≡ od→ord (u x , u x)) ∧ def (od (ord→od z)) (od→ord y) → ⊥) → ⊥ - lemma2 y lt not = not (od→ord (u x)) record { proj1 = case1 refl ; proj2 = subst (λ k → def (od k) (od→ord y) ) (sym oiso) lt } - lemma3 : {x : HOD} → od→ord (u x) o< osuc (od→ord ( Union (u x , (u x , u x)) )) - lemma3 {x} = od⊆→o≤ lemma1 - lemma6 : {x y : HOD} → y ≡ u x → HOD - lemma6 {x} _ = x - lemma : {y : Ordinal} → infinite-d y → y o< next o∅ - lemma {y} = TransFinite {λ x → infinite-d x → x o< next o∅ } ind y where - ind : (x : Ordinal) → ((z : Ordinal) → z o< x → infinite-d z → z o< (next o∅)) → - infinite-d x → x o< (next o∅) - ind o∅ prev iφ = proj1 next-limit - ind x prev (isuc lt) = lemma0 {_} {x} {!!} where - lemma0 : {x z : Ordinal} → x o< od→ord (Union (ord→od z , (ord→od z , ord→od z))) → od→ord (Union (ord→od x , (ord→od x , ord→od x))) o< next o∅ - lemma0 {x} with prev x {!!} - ... | t = {!!} + infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ωmax ; <odmax = <ωmax } _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y